
*Corresponding author: E-mail: vldms@yahoo.com;

J. Sci. Res. Rep., vol. 29, no. 12, pp. 20-31, 2023

Journal of Scientific Research and Reports

Volume 29, Issue 12, Page 20-31, 2023; Article no.JSRR.110806
ISSN: 2320-0227

Analysis of Machine Reading
Comprehension Problem Using

Machine Learning Techniques

V. Kakulapati a*, Gagganapalli Jithendhar Reddy a,
Koukuntla Kranthi Kumar Reddy a,

Putukapu Amarendhar Reddy a and Devender Reddy a

a Sreenidhi Institute of Science and Technology, Yamnampet, Ghatkesar, Hyderabad,
Telangana-501301, India.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final

manuscript.

Article Information

DOI: 10.9734/JSRR/2023/v29i121814

Open Peer Review History:
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers,

peer review comments, different versions of the manuscript, comments of the editors, etc are available here:
https://www.sdiarticle5.com/review-history/110806

Received: 14/10/2023
Accepted: 19/12/2023
Published: 20/12/2023

ABSTRACT

Machine reading Comprehension is a significant challenge in the field of natural language
programming. In this problem, the objective is to read and grasp a given text passage before
responding to questions that are dependent on the material. The most modern machine reading
comprehension systems have accuracy levels that are superior to those of humans. On the other
hand, when domains are switched, the majority of machine reading comprehension systems see a
considerable drop in performance. However, certain machine reading comprehension systems have
previously outperformed humans on a range of standard datasets, despite the evident and vast
disparity among them. This is the case even though MRC models are not designed to read like
humans. This demonstrates the need for enhancing the currently available datasets, assessment
criteria, and models to progress the machine reading comprehension models toward "actual"

Original Research Article

Kakulapati et al.; J. Sci. Res. Rep., vol. 29, no. 12, pp. 20-31, 2023; Article no.JSRR.110806

21

comprehension. In this work, the analysis of the machine reading comprehension problem
performed by using logistic regression, K- nearest neighbor, and random forest. This strategy will
include perspectives that are topic-oriented, concept-oriented, and time-oriented, and it will provide
support for the summary of multilingual texts with the assistance of several machine reading
comprehension models that are currently in development.

Keywords: Machine reading comprehension; model; Latent; machine learning; topic; concept; text;
domain; multilingual.

1. INTRODUCTION

There are two main categories of machine
reading comprehension, both of which aim to
teach machines to infer answers from texts,
namely extracting and non-extractive [1]. The
goal of extractive machine reading
comprehension is to train models to determine
which parts of a reference book contain the
answers to a given inquiry. Tasks like close-test
[2] and span extraction [3] come to mind.

In low-resource languages, there is a lack of
machine reading comprehension -based
applications. By processing the language and
transecting the response, however, the algorithm
impressively simulates human talents. Since
word embeddings (also known as word vectors)
form the basis of many natural language
processing techniques, deep learning is very
helpful when working with them. When learning
a representation for a given text, "word
embedding" assigns the same representation to
words that have the same meaning. This method
involves representing each word as a real-valued
vector in some kind of fixed vector space. Using
a technique similar to a neural network, the
numerical values of vectors representing
individual words are learned. Because it solves
so many issues with natural language
processing, this phenomenon has been heralded
as a major advance in deep learning [4].

As a consequence, NLP has been the subject of
substantial study, and it is effective at several
tasks, such as machine reading comprehension
[5,6], automatic conversion [7,8], and linguistic
interpretation [6]. In light of their latest grant,
machine reading comprehension’s Arianna
Dulizia was the associate editor in charge of
organizing the evaluation of this manuscript and
giving her stamp of approval before publication.
Reading a complete text that pertains to a
question and comprehending its context to
deliver a response to that question is an activity
that requires a substantial level of focus. This
method is essential in many situations, including

recommendation systems, question responding,
and discourse, and it is comparable to the
common human effort of reading comprehension.
Therefore, reading comprehension robots aid
humans inefficiently and conveniently obtaining
knowledge. The Stanford Question Answering
Dataset (SQuAD) [9], WikiQA [10], NewsQA [11],
and TriviaQA [12] are only a few of the datasets
utilized in recent works that suggest methods for
using large-scale datasets for machine reading
comprehension [13]. The basic building blocks of
machine reading comprehension datasets are
the context-query-response pairs. Most extant
machine reading comprehension datasets have
well-written contexts with enough evidence to
answer the inquiry [8].

Specifically, we use a logistic regression model
to solve this issue. The accuracy of the trained
model is 29%, which means that out of all the
papers, 29% had the blank properly filled in. A
random estimate of a term for each document in
the collection would have an accuracy of about
4%, given that most documents include
approximately 25 entities. In other words, this
model does a respectable job!

The results of the logistic regression model are
satisfactory, but they are far from "human-like."
The model is only 29% accurate. Now, the
question is how we might improve our model's
capacity for learning [14].

2. RELATED WORK

Research on MRC has been conducted mostly in
English but also several other languages [15].
There are several sectors and uses for MRC
methods.

The first machine reading comprehension
systems appeared in the 1970s, with the most
noteworthy being Lehnert's QUALM system [16].
Unfortunately, the magnitude and scope
of this system prevented it from finding
widespread use. In the 1980s and 1990s,
machine reading comprehension research was

Kakulapati et al.; J. Sci. Res. Rep., vol. 29, no. 12, pp. 20-31, 2023; Article no.JSRR.110806

22

largely disregarded. The authors' focus in yet
another study was squarely on machine reading
comprehension initiatives. An machine reading
comprehension dataset with story content suited
for third through sixth grade and five "wh" (what,
where, when, why, and who) questions was
made public in 1999 [17]. Formed a bag-of-words
approach, whereby texts, including queries and
environments, were depicted as a collection of
phrases, and chosen terms occurring throughout
the query, and background information were the
response. Previously, machine reading
comprehension issues were often handled using
conventional procedures or algorithms. A rule-
based machine reading comprehension method
known as Quarc [18] is designed to answer "wh"
questions of different issues via the use of
morphological modeling, namely part-of-speech
labeling, ontological category labeling, and object
recognition. Bootstrapping, Markov logic, and
autonomous training were among the ML
methods utilized [19]. However, the following are
some of the drawbacks of using such
approaches: To begin, they rely heavily on rules
or characteristics that have been painstakingly
developed by humans. Second, such algorithms
can't generalize; therefore, their effectiveness
may suffer when confronted with massive
datasets, including a wide variety of articles.
Lastly, certain classic methods fail to extract
contextual information and do not take into
account long-range relationships.

The majority of machine reading comprehension
jobs take the form of textual question responses,
although there are many more possible
configurations. According to Lucy Vanderwende
[20], automated text comprehension is a kind of
machine reading. "The capacity to correctly
answer questions about a book has been used
as a proxy for readers' comprehension of that
work. The capacity to formulate relevant
questions in response to a given material is one
alternative means of gauging a person's level of
comprehension. In reality, there are a plethora of
benchmark datasets available specifically for this
purpose. The conversational machine reading
comprehension dataset ShARC [21] is one such
example. Unlike with previous contemporary
machine reading comprehension datasets, the
machine addressing issues in the ShARC must
infer additional information not available in the
context to come up with the correct answer.
When engaging in a ShARC conversation, the
first inquiry usually does not provide enough
context for a quick answer. So it's up to the
computer to initiate the second inquiry; after it

has amassed sufficient information, it may
consider answering the first. Similarly, RecipeQA
[22] is a collection of data for multi-modal
analysis of demonstrated methods. In RecipeQA,
the ordering task is one of four different types of
challenges. A model's ability to properly organize
a series of representative photos of a recipe is
evaluated using an ordering challenge. The
setting of this visual exercise is a set of recipe
names and descriptions, similar to those of
earlier challenges. To achieve this, the technique
has to understand the chronological relationship
between options, such as "boiling the water first,
putting the spaghetti next," so that the ordered
sequence of images matches the given pattern.
Task delegation is another feature of MS Marco
[23].

Adding further NLP knowledge to the machine
reading comprehension study might be useful by
constructing an attention-based NMT system [24]
to address the problem of text comprehension in
languages other than English. The NMT system
interprets the non-English question pair into
English. so that the English-extracting
understanding of the texts system may answer;
the system's attention-weighted scores are
subsequently utilized to organize the replies in
the target language. Machine reading
comprehension activities may also benefit from
the incorporation of new information. When
completing the machine reading comprehension
job, the developers relied on syntactic
information to narrow their focus. By using
syntactic dependence of interest (SDOI), they
developed an SDOI-SAN that performed at the
cutting edge of the field in the SQuAD 2.0
challenge. The results of more than 40 of the
most popular deep learning text classification
datasets were summarized, along with the
results of more than 150 other methods. Several
of the methods described here have already
been used on existing machine reading
comprehension initiatives.

3. METHODOLOGY

Algorithm 1 describes the whole two-step
procedure. The first fine-tuning step involves
supervised training on the labeled dataset Ds to
further refine the pre-trained machine reading
comprehension model. Model M0 serves as a
foundation for further work. The training and
labeling procedure is repeated numerous times
throughout the self-training phase. In order to
train M0. 0 on the unlabeled dataset, we first
used the model Mi to produce pseudo-labels for
the dataset Dt at each iteration i.

Kakulapati et al.; J. Sci. Res. Rep., vol. 29, no. 12, pp. 20-31, 2023; Article no.JSRR.110806

23

Chart 1. Framework for self-trained pseudo question generator

Here, one encounters several challenges:

• Initially, robots need to be taught how
language works and what it means.
Machines need to be taught how words work
together in sentences before they can
"understand" the meaning of a phrase the
way a human can.

Secondly, the solution to a question may not be
immediately apparent in the text. It is possible to
spend a great deal of time poring through a piece
of text without ever seeing the solution that is
there. Since English is very flexible, a sequence
of words that you are seeking could not show up
word for word in the piece, making it much more
difficult for robots.

The data set is collected from Kaggle which is
freely available and after preprocessing
generating the Question Generator class is
defined, which is a transformer-based NLP
system for generating reading comprehension-
style questions from texts. It has several
methods for generating questions, filtering low-
quality questions, and evaluating the quality of
generated QA pairs. The init method initializes
the Question Generator object by loading a pre-
trained question generator model and a QA
evaluator model. It also sets some constants
such as the answer token, context token, and
sequence length.

The generate method takes an article (a string of
text) and generates a set of question-and-answer
pairs. It takes several optional arguments such
as use_evaluator, num_questions, and
answer_style. If use_evaluator is True, then QA
pairs will be ranked and filtered based on their
quality. The answer_style argument should be
selected from ["all", "sentences",
"multiple_choice"]. The generate_qg_inputs
method takes a text as input and returns a list of
model inputs and a list of corresponding
answers. The data supplied format for the
system is "answer_token answer text>
context_token context text>," wherein the
"answer" is a string of characters taken from the
content, and the "context" is the remainder of the
text. This method splits the text into segments,
then splits each segment into sentences (if
answer_style is "sentences" or "all"), and
prepares the model inputs and answers for each
sentence or segment. If answer_style is
"multiple_choice" or "all", it prepares the model
inputs and answers for multiple-choice questions.

The remaining methods are helper methods for
generating and filtering questions. The
_split_into_segments method splits a text into
segments based on the number of sentences in
each segment. The _split_text method splits a
text into sentences. The _prepare_qg_inputs
method prepares model inputs and answers for a
sentence or segment of text. The

Kakulapati et al.; J. Sci. Res. Rep., vol. 29, no. 12, pp. 20-31, 2023; Article no.JSRR.110806

24

_prepare_qg_inputs_MC method prepares model
inputs and answers for a multiple-choice
question. The _get_all_qa_pairs method returns
all generated QA pairs. The
_get_ranked_qa_pairs method ranks generated
QA pairs based on their quality and returns the
top k pairs. generate_questions_from_inputs:
Given a list of concatenated answers and
contexts, generates a list of questions.
 After generating questions, then

• _split_text: Splits the text into sentences and
attempts to split or truncate long
sentences.

• _split_into_segments: Splits a long text into
segments short enough to be input into the
transformer network. Segments are used as
context for question generation.

• _prepare_qg_inputs: Uses sentences as
answers and the text as context. Returns a
tuple of (model inputs, answers). Model
inputs are "answer_token <answer text>
context_token <context text>".

• ._prepare_qg_inputs_MC: Extracts entities
from text using NER (named entity
recognition) and considers them while
generating possible responses to MCQs.
Sentences provide the background for
questions, while entities provide the
solutions. Obtains a tuple containing the
model's inputs and outputs. Answer_token
[answer text] context_token [context text] is
the input to the model.

• ._get_MC_answers: Finds a set of
alternative answers for a multiple-choice
question. Will attempt to find alternatives of
the same entity type as the correct answer if
possible.

• _generate_question: Takes a qg_input,
which is the concatenated answer and
context, and uses it to generate a question
sentence. The generated question is
decoded and then returned.

• .generate_questions_from_inputs: Given a
list of concatenated answers and contexts,
generates a list of questions.

• _split_text: Splits the text into sentences
and attempts to split or truncate long
sentences.

• _split_into_segments: Splits a long text into
segments short enough to be input into the
transformer network. Segments are used as
context for question generation.

• _prepare_qg_inputs: Uses sentences as
answers and the text as context. Returns a
tuple of (model inputs, answers). Model

inputs are "answer_token <answer text>
context_token <context text>".

• _prepare_qg_inputs_MC: Performs Named
Entity Recognition (NER) on the text and
uses extracted entities as candidate answers
for multiple-choice questions. Sentences are
used as context, and entities are used as
answers. Returns a tuple of (model inputs,
answers). Model inputs are "answer_token
<answer text> context_token <context text>".

• _get_MC_answers: Finds a set of alternative
answers for a multiple-choice question. Will
attempt to find alternatives of the same entity
type as the correct answer if possible.

• _generate_question: Takes a qg_input,
which is the concatenated answer and
context, and uses it to generate a question
sentence. The generated question is
decoded and then returned.

The first line imports the argparse module, which
is used to parse command line arguments.

The next two lines import the QuestionGenerator
class and the print_qa function from the
pseudo_question_answer_generator module.
The parse_args() function is defined to parse
command line arguments. It creates an instance
of the argparse. ArgumentParser class and adds
several arguments to it using the add_argument
() method. These arguments specify the desired
type of answers, the model directory, the number
of questions to generate, whether to show
answers or not, the path to the input text file, and
whether to use a QA evaluator. The function then
returns a Namespace object that contains the
parsed arguments. The if name == "main": block
is the entry point of the script. It first calls the
parse_args() function to parse the command line
arguments, and then opens the input text file
specified in the --text_file argument and reads its
contents into a variable called text_file.

Run qa strings: This script generates questions
and answers from a given text file using the
QuestionGenerator class. Here's an explanation
of how the code works:

• The argparse module is used to parse the
command line arguments. The parse_args()
function sets up an argument parser, adds
the necessary arguments, and returns an
object with the parsed arguments.

• In the if __name__ == "__main__": block, the
script first parses the command line
arguments using the parse_args() function.

Kakulapati et al.; J. Sci. Res. Rep., vol. 29, no. 12, pp. 20-31, 2023; Article no.JSRR.110806

25

• The script then reads the input text file
specified in the arguments using the open()
function and then with the statement.

• A QuestionGenerator object is initialized.

• The generate() method of the
QuestionGenerator class is called to
generate a list of question-answer pairs. The
method takes in the input text, the desired
number of questions to generate, the desired
style of answers, and whether to use an
evaluator to check the accuracy of the
answers. The generated pairs are stored in
the qa_list variable.

• The print_qa() function is called to print the
question-answer pairs to the console. The
function takes in the qa_list variable and
whether to show the answers.

• The QuestionGenerator class and the
print_qa() function are part of the
pseudo_question_answer_generator
module, which is used to generate question-
answer pairs from text.

4. IMPLEMENTATION WORK

It is widely recognized that the
size of the labeled dataset influences the
performance of a pre-trained model used to fine-
tune a subsequent task. The subsequent phase
is to apply the method of training themselves to
these kinds of models to check how the
effectiveness of the learning strategy for the base
model varies depending on the amount of the
tagged dataset used for learning. To improve the
self-training process, we doubled the size of the
unlabeled dataset used. Fig. 4 shows that the
basic model's evaluation effectiveness is
consistently enhanced by the learning
themselves technique, whereas the base model's
fine-tuning is highly dependent on the quantity of
domain-labeled data available. Nonetheless, the
self-training strategy adds less and less to the
overall effectiveness of the base model as the
evaluation efficiency of the base mode
l improves.

Fig. 1. Pseudo-answer strings

Table 1. Logistic Regression measures

 Precision Recall F1-Score Support

0 0.89 0.86 0.88 102
1 0.86 0.89 0.87 98

Accuracy 0.88 200
Macro Avg 0.88 0.88 0.87 200

Weighted AVG 0.88 0.88 0.88 200

Kakulapati et al.; J. Sci. Res. Rep., vol. 29, no. 12, pp. 20-31, 2023; Article no.JSRR.110806

26

Fig. 2. Generating questions

Kakulapati et al.; J. Sci. Res. Rep., vol. 29, no. 12, pp. 20-31, 2023; Article no.JSRR.110806

27

Fig. 3. Question answer strings

Kakulapati et al.; J. Sci. Res. Rep., vol. 29, no. 12, pp. 20-31, 2023; Article no.JSRR.110806

28

Fig. 4. Confusion Matrix of predicted questions

Fig. 5. Precision-Recall Curve

Fig. 6. A comparative analysis of different algorithms measures

Kakulapati et al.; J. Sci. Res. Rep., vol. 29, no. 12, pp. 20-31, 2023; Article no.JSRR.110806

29

Fig. 7. Histogram comparative analysis of different algorithms measures

Fig. 8. Receiver Operating Characteristic Curve

5. DISCUSSION

The script then creates an instance of the
QuestionGenerator class and assigns it to the
variable qg. The generate () method of the qg
object is called to create a list of question-answer
pairs based on the input text. The method takes
several arguments, including the input text, the
number of questions to generate, the desired
answer style, and whether to use a QA evaluator.
The generated question-answer pairs are
returned as a list and assigned to the variable
qa_list. The print_qa() function is called to print
the generated question-answer pairs. The
function takes two arguments: the list of
question-answer pairs and whether to show the
answers or not, as specified by the --
show_answers argument. That's a summary of
what this script does. Overall, it's a useful tool for
generating pseudo questions and answers from

text, which could be helpful for tasks like building
chatbots or generating study aids for students.

Humans rely heavily on their vast store of
common sense and prior information to help
them understand what they read. To achieve the
same results with machine reading, a
knowledge-based MRC is presented. The
question of how to most efficiently integrate and
use new information is continuing. One problem
is that integrating text in context and questions
with the structure of information held in
knowledge bases is challenging. The success of
knowledge-based MRC, on the other hand,
depends heavily on the accuracy of the
information it uses. Knowledge base construction
is labor-intensive and time-consuming. Also,
knowledge bases are often deficient, so it's not
always easy to find relevant external information
to back up response prediction and reasoning.

Kakulapati et al.; J. Sci. Res. Rep., vol. 29, no. 12, pp. 20-31, 2023; Article no.JSRR.110806

30

More research is needed on how to combine
knowledge graphs with machine reading
comprehension effectively.

6. CONCLUSION

MRC is an approach to learning that uses
conversational techniques to enhance passage
comprehension, such as the use of linked
question and response procedures. The
technology has shown promise in outperforming
humans on benchmark datasets, but further
advancement toward true understanding would
need improved datasets, evaluation criteria, and
models. Models developed using the MRC
facilitate the summarization of texts in several
languages from topical, conceptual, and temporal
viewpoints. Using logistic regression, k-nearest
neighbors, and random forest analysis This
approach can aid in the summarization of
multilingual texts with the use of numerous MRC
models that are presently in development, and it
will incorporate topic-oriented, concept-oriented,
and time-oriented views.

7. FUTURE ENHANCEMENT

Through the use of self-training, we produce
pseudo-labeled training data with which to train
the model and boost its accuracy and
generalization effectiveness. Nevertheless,
training a model repeatedly using our self-
training method takes a long time and is
inefficient; therefore, we believe it might be
improved upon. Unfortunately, our methodology
is limited to only those three jobs and won't work
for any other MRC problems. In the future, we'd
like to investigate more advanced multimodal
approaches for automated text reading.

COMPETING INTERESTS

Authors have declared that no competing
interests exist.

REFERENCES

1. Zhang Z, Yang J, Zhao H. Retrospective

Reader for Machine Reading
Comprehension. In Proceedings of the
AAAI Conference on Artificial Intelligence,
Virtual, 2–9 February 2021; AAAI Press:
Palo Alto, CA, USA. 2021;35:14506–
14514.

2. Xie Q, Lai G, Dai Z, Hovy E. Large-scale
cloze test dataset created by teachers. In
Proceedings of the 2018 Conference on

Empirical Methods in Natural Language
Processing, Brussels, Belgium, 31
October–4 November. 2018;2344–2356.

3. Inoue N, Stenetorp P, Inui K. R4C: A
benchmark for evaluating RC systems to
get the right answer for the right reason. In
Proceedings of the 58th Annual Meeting of
the Association for Computational
Linguistics, Stroudsburg, PA, USA, 6–8
July 2020; Association for Computational
Linguistics: Stroudsburg, PA, USA.
2020;6740–6750.

4. Alkhatnai Mubarak, Amjad Hamza Imam,
Amjad Maaz, Gelbukh Alexander. Methods
and Trends of Machine Reading
Comprehension in the Arabic
Language. Computación y Sistemas.
2020;24(4):1607-1615. Epub 11 de junio
de 2021.
Available:https://doi.org/10.13053/cys-24-
4-3878.

5. Hu M, Peng Y, Huang Z, Qiu X, Wei F,
Zhou M. ‘‘Reinforced mnemonic reader for
machine reading comprehension. In Proc.
27th Int. Joint Conf. Artif. Intell. Jul.
2018;4099–4106.

6. Brants T, Popat AC, Xu P, Och FJ, Dean J.
Large language models in machine
translation. In Proc. Joint Conf. Empirical
Methods Natural Lang. Process. Comput.
Natural Lang. Learn. 2007;858–867.

7. Liu X, He P, Chen W, Gao J. Multi-task
deep neural networks for natural language
understanding. In Proc. 57th Annu.
Meeting Assoc. Comput. Linguistics.
2019;4487–4496.

8. Available:https://towardsdatascience.com/i
nvestigating-the-machine-reading-
comprehension-problem-with-deep-
learning-af850dbec4c0

9. Rajpurkar P, Zhang J, Lopyrev K, Liang P.
‘‘SQuAD: 100,000+ questions for machine
comprehension of text,’’ in Proc. Conf.
Empirical Methods Natural Lang. Process.
2016:2383–2392.

10. Yang Y, Yih W, Meek C. WikiQA: A
challenge dataset for open-domain
question answering,’’ in Proc. Conf.
Empirical Methods Natural Lang. Process.
2015;2013–2018. Trischler T, Wang X.
Yuan J, Harris A, Sordoni P, Bachman,
Suleman K. ‘NewsQA: A machine
comprehension dataset. In Proc. 2nd
Workshop Represent. Learn. (NLP), Nov.
2016;191–200.

11. Joshi M, Choi E, Weld D, Zettlemoyer L.
‘TriviaQA: A large scale distantly

Kakulapati et al.; J. Sci. Res. Rep., vol. 29, no. 12, pp. 20-31, 2023; Article no.JSRR.110806

31

supervised challenge dataset for reading
comprehension,’’ in Proc. 55th Annu.
Meeting Assoc. for Comput. Linguistics.
2017;1601–1611.

12. Dunn M, Sagun L, Higgins M, Guney VU,
Cirik V, Cho K. SearchQA: A new Q&A
dataset augmented with context from a
search engine.’ Apr. 2017,
arXiv:1704.05179. [Online]. Available:
https://arxiv.org/abs/1704.05179.

13. Hu M, Wei F, Peng Y, Huang Z, Yang N, Li
D. ‘Read+verify Machine reading
comprehension with unanswerable
questions. in Proc. AAAI. 2019;33:6529–
6537.

14. Yi Yang, Wen-tau Yih, Meek C. Wikiqa: A
challenge dataset for open-domain
question answering. Proceedings of
the Conference on Empirical Methods in
Natural Language Processing. 2015;2013–
2018.
DOI:10.18653/v1/D15-1237.

15. Lehnert WG. the process of question
answering. Ph.D. Thesis, Yale University,
New Haven, CT, USA; 1977.

16. Hirschman L, Light M, Breck E, Burger JD.
Deep read: A reading comprehension
system. In Proceedings of the 37th Annual
Meeting of the Association for
Computational Linguistics on
Computational Linguistics, College Park,
MD, USA, 20–26 June 1999; Association
for Computational Linguistics: Stroudsburg,
PA, USA. 1999;325–332.

17. Riloff E. Thelen M. A rule-based question
answering system for reading
comprehension tests. In Proceedings of
the 2000 ANLP/NAACL Workshop on
Reading Comprehension Tests as
Evaluation for Computer-based Language
Understanding Sytems—Volume 6,
Seattle, WA, USA, 4 May 2000;
Association for Computational Linguistics:
Stroudsburg, PA, USA. 2000;13–19.

18. Poon H, Christensen J, Domingos P,
Etzioni O, Hoffmann R, Kiddon C, Lin T,

Ling X, Ritter A, Schoenmackers S, et al.
Machine Reading at the University of
Washington. In Proceedings of the NAACL
HLT 2010 First International Workshop on
Formalisms and Methodology for Learning
by Reading, Los Angeles, CA, USA, 6
June 2010; Association for Computational
Linguistics: Stroudsburg, PA, USA.
2010;87–95.

19. Vanderwende L. Answering and
Questioning for Machine Reading. AAAI
Spring Symposium: Machine Reading.
2007;91.

20. Saeidi M, Bartolo M, Lewis P, Singh S,
Rocktäschel T, Sheldon M, Bouchard G,
Riedel S. Interpretation of natural language
rules in conversational machine reading.
Proceedings of the 2018 Conference on
Empirical Methods in Natural Language
Processing; Association for Computational
Linguistics: Brussels, Belgium. 2018;2087–
2097.
DOI:10.18653/v1/D18-1233.

21. Yagcioglu S, Erdem A, Erdem E, Ikizler-
Cinbis N. RecipeQA: A challenge dataset
for multimodal comprehension of cooking
recipes. Proceedings of the 2018
Conference on Empirical Methods in
Natural Language Processing; Association
for Computational Linguistics: Brussels,
Belgium. 2018;1358–1368.
DOI:10.18653/v1/D18-1166.

22. Asai A, Eriguchi A, Hashimoto K, Tsuruoka
Y. Multilingual extractive reading
comprehension by runtime machine
translation; 2018.

23. Zhang Z, Wu Y, Zhou J, Duan S, Wang R.
SG-Net: Syntax-guided machine reading
comprehension. Proceedings of the Thirty-
Fourth AAAI Conference on Artificial
Intelligence (AAAI 2020); 2020.

24. Minaee S, Kalchbrenner N, Cambria E,
Nikzad N, Chenaghlu M, Gao J. deep
learning based text classification: A
comprehensive review; 2020, [arXiv:
cs.CL/2004.03705].

© 2023 Kakulapati et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

https://www.sdiarticle5.com/review-history/110806

http://creativecommons.org/licenses/by/4.0

