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ABSTRACT 
 
Machine reading Comprehension is a significant challenge in the field of natural language 
programming. In this problem, the objective is to read and grasp a given text passage before 
responding to questions that are dependent on the material. The most modern machine reading 
comprehension systems have accuracy levels that are superior to those of humans. On the other 
hand, when domains are switched, the majority of machine reading comprehension systems see a 
considerable drop in performance. However, certain machine reading comprehension systems have 
previously outperformed humans on a range of standard datasets, despite the evident and vast 
disparity among them. This is the case even though MRC models are not designed to read like 
humans. This demonstrates the need for enhancing the currently available datasets, assessment 
criteria, and models to progress the machine reading comprehension models toward "actual" 
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comprehension. In this work, the analysis of the machine reading comprehension problem 
performed by using logistic regression, K- nearest neighbor, and random forest. This strategy will 
include perspectives that are topic-oriented, concept-oriented, and time-oriented, and it will provide 
support for the summary of multilingual texts with the assistance of several machine reading 
comprehension models that are currently in development.  
 

 

Keywords: Machine reading comprehension; model; Latent; machine learning; topic; concept; text; 
domain; multilingual. 

 

1. INTRODUCTION  
 
There are two main categories of machine 
reading comprehension, both of which aim to 
teach machines to infer answers from texts, 
namely extracting and non-extractive [1]. The 
goal of extractive machine reading 
comprehension is to train models to determine 
which parts of a reference book contain the 
answers to a given inquiry. Tasks like close-test 
[2] and span extraction [3] come to mind.  
 
In low-resource languages, there is a lack of 
machine reading comprehension -based 
applications. By processing the language and 
transecting the response, however, the algorithm 
impressively simulates human talents. Since 
word embeddings (also known as word vectors) 
form the basis of many natural language 
processing techniques, deep learning is very 
helpful when working with them. When learning  
a representation for a given text, "word 
embedding" assigns the same representation to 
words that have the same meaning. This method 
involves representing each word as a real-valued 
vector in some kind of fixed vector space. Using 
a technique similar to a neural network, the 
numerical values of vectors representing 
individual words are learned. Because it solves 
so many issues with natural language 
processing, this phenomenon has been heralded 
as a major advance in deep learning [4]. 
 
As a consequence, NLP has been the subject of 
substantial study, and it is effective at several 
tasks, such as machine reading comprehension 
[5,6], automatic conversion [7,8], and linguistic 
interpretation [6]. In light of their latest grant, 
machine reading comprehension’s Arianna 
Dulizia was the associate editor in charge of 
organizing the evaluation of this manuscript and 
giving her stamp of approval before publication. 
Reading a complete text that pertains to a 
question and comprehending its context to 
deliver a response to that question is an activity 
that requires a substantial level of focus. This 
method is essential in many situations, including 

recommendation systems, question responding, 
and discourse, and it is comparable to the 
common human effort of reading comprehension. 
Therefore, reading comprehension robots aid 
humans inefficiently and conveniently obtaining 
knowledge. The Stanford Question Answering 
Dataset (SQuAD) [9], WikiQA [10], NewsQA [11], 
and TriviaQA [12] are only a few of the datasets 
utilized in recent works that suggest methods for 
using large-scale datasets for machine reading 
comprehension [13]. The basic building blocks of 
machine reading comprehension datasets are 
the context-query-response pairs. Most extant 
machine reading comprehension datasets have 
well-written contexts with enough evidence to 
answer the inquiry [8]. 
 
Specifically, we use a logistic regression model 
to solve this issue. The accuracy of the trained 
model is 29%, which means that out of all the 
papers, 29% had the blank properly filled in. A 
random estimate of a term for each document in 
the collection would have an accuracy of about 
4%, given that most documents include 
approximately 25 entities. In other words, this 
model does a respectable job! 
 
The results of the logistic regression model are 
satisfactory, but they are far from "human-like." 
The model is only 29% accurate. Now, the 
question is how we might improve our model's 
capacity for learning [14]. 
 

2. RELATED WORK 
 
Research on MRC has been conducted mostly in 
English but also several other languages [15]. 
There are several sectors and uses for MRC 
methods. 
 
The first machine reading comprehension 
systems appeared in the 1970s, with the most 
noteworthy being Lehnert's QUALM system [16]. 
Unfortunately, the magnitude and scope              
of this system prevented it from finding 
widespread use. In the 1980s and 1990s, 
machine reading comprehension research was 
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largely disregarded. The authors' focus in yet 
another study was squarely on machine reading 
comprehension initiatives. An machine reading 
comprehension dataset with story content suited 
for third through sixth grade and five "wh" (what, 
where, when, why, and who) questions was 
made public in 1999 [17]. Formed a bag-of-words 
approach, whereby texts, including queries and 
environments, were depicted as a collection of 
phrases, and chosen terms occurring throughout 
the query, and background information were the 
response. Previously, machine reading 
comprehension issues were often handled using 
conventional procedures or algorithms. A rule-
based machine reading comprehension method 
known as Quarc [18] is designed to answer "wh" 
questions of different issues via the use of 
morphological modeling, namely part-of-speech 
labeling, ontological category labeling, and object 
recognition. Bootstrapping, Markov logic, and 
autonomous training were among the ML 
methods utilized [19]. However, the following are 
some of the drawbacks of using such 
approaches: To begin, they rely heavily on rules 
or characteristics that have been painstakingly 
developed by humans. Second, such algorithms 
can't generalize; therefore, their effectiveness 
may suffer when confronted with massive 
datasets, including a wide variety of articles. 
Lastly, certain classic methods fail to extract 
contextual information and do not take into 
account long-range relationships. 
 
The majority of machine reading comprehension 
jobs take the form of textual question responses, 
although there are many more possible 
configurations. According to Lucy Vanderwende 
[20], automated text comprehension is a kind of 
machine reading. "The capacity to correctly 
answer questions about a book has been used 
as a proxy for readers' comprehension of that 
work. The capacity to formulate relevant 
questions in response to a given material is one 
alternative means of gauging a person's level of 
comprehension. In reality, there are a plethora of 
benchmark datasets available specifically for this 
purpose. The conversational machine reading 
comprehension dataset ShARC [21] is one such 
example. Unlike with previous contemporary 
machine reading comprehension datasets, the 
machine addressing issues in the ShARC must 
infer additional information not available in the 
context to come up with the correct answer. 
When engaging in a ShARC conversation, the 
first inquiry usually does not provide enough 
context for a quick answer. So it's up to the 
computer to initiate the second inquiry; after it 

has amassed sufficient information, it may 
consider answering the first. Similarly, RecipeQA 
[22] is a collection of data for multi-modal 
analysis of demonstrated methods. In RecipeQA, 
the ordering task is one of four different types of 
challenges. A model's ability to properly organize 
a series of representative photos of a recipe is 
evaluated using an ordering challenge. The 
setting of this visual exercise is a set of recipe 
names and descriptions, similar to those of 
earlier challenges. To achieve this, the technique 
has to understand the chronological relationship 
between options, such as "boiling the water first, 
putting the spaghetti next," so that the ordered 
sequence of images matches the given pattern. 
Task delegation is another feature of MS Marco 
[23]. 
 

Adding further NLP knowledge to the machine 
reading comprehension study might be useful by 
constructing an attention-based NMT system [24] 
to address the problem of text comprehension in 
languages other than English. The NMT system 
interprets the non-English question pair into 
English. so that the English-extracting 
understanding of the texts system may answer; 
the system's attention-weighted scores are 
subsequently utilized to organize the replies in 
the target language. Machine reading 
comprehension activities may also benefit from 
the incorporation of new information. When 
completing the machine reading comprehension 
job, the developers relied on syntactic 
information to narrow their focus. By using 
syntactic dependence of interest (SDOI), they 
developed an SDOI-SAN that performed at the 
cutting edge of the field in the SQuAD 2.0 
challenge. The results of more than 40 of the 
most popular deep learning text classification 
datasets were summarized, along with the 
results of more than 150 other methods. Several 
of the methods described here have already 
been used on existing machine reading 
comprehension initiatives. 
 

3. METHODOLOGY  
 

Algorithm 1 describes the whole two-step 
procedure. The first fine-tuning step involves 
supervised training on the labeled dataset Ds to 
further refine the pre-trained machine reading 
comprehension model. Model M0 serves as a 
foundation for further work. The training and 
labeling procedure is repeated numerous times 
throughout the self-training phase. In order to 
train M0. 0 on the unlabeled dataset, we first 
used the model Mi to produce pseudo-labels for 
the dataset Dt at each iteration i. 
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Chart 1. Framework for self-trained pseudo question generator 
 
Here, one encounters several challenges: 
 

• Initially, robots need to be taught how 
language works and what it means. 
Machines need to be taught how words work 
together in sentences before they can 
"understand" the meaning of a phrase the 
way a human can. 

 
Secondly, the solution to a question may not be 
immediately apparent in the text. It is possible to 
spend a great deal of time poring through a piece 
of text without ever seeing the solution that is 
there. Since English is very flexible, a sequence 
of words that you are seeking could not show up 
word for word in the piece, making it much more 
difficult for robots. 
 
The data set is collected from Kaggle which is 
freely available and after preprocessing 
generating the Question Generator class is 
defined, which is a transformer-based NLP 
system for generating reading comprehension-
style questions from texts. It has several 
methods for generating questions, filtering low-
quality questions, and evaluating the quality of 
generated QA pairs. The init method initializes 
the Question Generator object by loading a pre-
trained question generator model and a QA 
evaluator model. It also sets some constants 
such as the answer token, context token, and 
sequence length. 

The generate method takes an article (a string of 
text) and generates a set of question-and-answer 
pairs. It takes several optional arguments such 
as use_evaluator, num_questions, and 
answer_style. If use_evaluator is True, then QA 
pairs will be ranked and filtered based on their 
quality. The answer_style argument should be 
selected from ["all", "sentences", 
"multiple_choice"]. The generate_qg_inputs 
method takes a text as input and returns a list of 
model inputs and a list of corresponding 
answers. The data supplied format for the 
system is "answer_token answer text> 
context_token context text>," wherein the 
"answer" is a string of characters taken from the 
content, and the "context" is the remainder of the 
text. This method splits the text into segments, 
then splits each segment into sentences (if 
answer_style is "sentences" or "all"), and 
prepares the model inputs and answers for each 
sentence or segment. If answer_style is 
"multiple_choice" or "all", it prepares the model 
inputs and answers for multiple-choice questions.  
 
The remaining methods are helper methods for 
generating and filtering questions. The 
_split_into_segments method splits a text into 
segments based on the number of sentences in 
each segment. The _split_text method splits a 
text into sentences. The _prepare_qg_inputs 
method prepares model inputs and answers for a 
sentence or segment of text. The 
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_prepare_qg_inputs_MC method prepares model 
inputs and answers for a multiple-choice 
question. The _get_all_qa_pairs method returns 
all generated QA pairs. The 
_get_ranked_qa_pairs method ranks generated 
QA pairs based on their quality and returns the 
top k pairs. generate_questions_from_inputs: 
Given a list of concatenated answers and 
contexts, generates a list of questions. 
 After generating questions, then  
 

• _split_text: Splits the text into sentences and 
attempts to split or truncate long            
sentences.  

• _split_into_segments: Splits a long text into 
segments short enough to be input into the 
transformer network. Segments are used as 
context for question generation. 

• _prepare_qg_inputs: Uses sentences as 
answers and the text as context. Returns a 
tuple of (model inputs, answers). Model 
inputs are "answer_token <answer text> 
context_token <context text>". 

• ._prepare_qg_inputs_MC: Extracts entities 
from text using NER (named entity 
recognition) and considers them while 
generating possible responses to MCQs. 
Sentences provide the background for 
questions, while entities provide the 
solutions. Obtains a tuple containing the 
model's inputs and outputs. Answer_token 
[answer text] context_token [context text] is 
the input to the model. 

• ._get_MC_answers: Finds a set of 
alternative answers for a multiple-choice 
question. Will attempt to find alternatives of 
the same entity type as the correct answer if 
possible. 

• _generate_question: Takes a qg_input, 
which is the concatenated answer and 
context, and uses it to generate a question 
sentence. The generated question is 
decoded and then returned. 

• .generate_questions_from_inputs: Given a 
list of concatenated answers and contexts, 
generates a list of questions. 

• _split_text: Splits the text into sentences            
and attempts to split or truncate long 
sentences. 

• _split_into_segments: Splits a long text into 
segments short enough to be input into the 
transformer network. Segments are used as 
context for question generation. 

• _prepare_qg_inputs: Uses sentences as 
answers and the text as context. Returns a 
tuple of (model inputs, answers). Model 

inputs are "answer_token <answer text> 
context_token <context text>". 

• _prepare_qg_inputs_MC: Performs Named 
Entity Recognition (NER) on the text and 
uses extracted entities as candidate answers 
for multiple-choice questions. Sentences are 
used as context, and entities are used as 
answers. Returns a tuple of (model inputs, 
answers). Model inputs are "answer_token 
<answer text> context_token <context text>". 

• _get_MC_answers: Finds a set of alternative 
answers for a multiple-choice question. Will 
attempt to find alternatives of the same entity 
type as the correct answer if possible. 

• _generate_question: Takes a qg_input, 
which is the concatenated answer and 
context, and uses it to generate a question 
sentence. The generated question is 
decoded and then returned. 

 
The first line imports the argparse module, which 
is used to parse command line arguments. 
 
The next two lines import the QuestionGenerator 
class and the print_qa function from the 
pseudo_question_answer_generator module. 
The parse_args() function is defined to parse 
command line arguments. It creates an instance 
of the argparse. ArgumentParser class and adds 
several arguments to it using the add_argument 
() method. These arguments specify the desired 
type of answers, the model directory, the number 
of questions to generate, whether to show 
answers or not, the path to the input text file, and 
whether to use a QA evaluator. The function then 
returns a Namespace object that contains the 
parsed arguments. The if name == "main": block 
is the entry point of the script. It first calls the 
parse_args() function to parse the command line 
arguments, and then opens the input text file 
specified in the --text_file argument and reads its 
contents into a variable called text_file. 
 
Run qa strings: This script generates questions 
and answers from a given text file using the 
QuestionGenerator class. Here's an explanation 
of how the code works: 
 

• The argparse module is used to parse the 
command line arguments. The parse_args() 
function sets up an argument parser, adds 
the necessary arguments, and returns an 
object with the parsed arguments. 

• In the if __name__ == "__main__": block, the 
script first parses the command line 
arguments using the parse_args() function. 
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• The script then reads the input text file 
specified in the arguments using the open() 
function and then with the statement. 

• A QuestionGenerator object is initialized. 

• The generate() method of the 
QuestionGenerator class is called to 
generate a list of question-answer pairs. The 
method takes in the input text, the desired 
number of questions to generate, the desired 
style of answers, and whether to use an 
evaluator to check the accuracy of the 
answers. The generated pairs are stored in 
the qa_list variable. 

• The print_qa() function is called to print the 
question-answer pairs to the console. The 
function takes in the qa_list variable and 
whether to show the answers. 

• The QuestionGenerator class and the 
print_qa() function are part of the 
pseudo_question_answer_generator 
module, which is used to generate question-
answer pairs from text. 

4. IMPLEMENTATION WORK 
 
It is widely recognized that the                                 
size of the labeled dataset influences the 
performance of a pre-trained model used to fine-
tune a subsequent task. The subsequent phase 
is to apply the method of training themselves to 
these kinds of models to check how the 
effectiveness of the learning strategy for the base 
model varies depending on the amount of the 
tagged dataset used for learning. To improve the 
self-training process, we doubled the size of the 
unlabeled dataset used. Fig. 4 shows that the 
basic model's evaluation effectiveness is 
consistently enhanced by the learning 
themselves technique, whereas the base model's 
fine-tuning is highly dependent on the quantity of 
domain-labeled data available. Nonetheless, the 
self-training strategy adds less and less to the 
overall effectiveness of the base model as the 
evaluation efficiency of the base mode                         
l improves.  

 

 
 

Fig. 1. Pseudo-answer strings 
 

Table 1. Logistic Regression measures 
 

 Precision  Recall  F1-Score  Support  

0 0.89 0.86 0.88 102 
1 0.86 0.89 0.87 98 

Accuracy   0.88 200 
Macro Avg 0.88 0.88 0.87 200 

Weighted AVG  0.88 0.88 0.88 200 
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Fig. 2. Generating questions 
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Fig. 3. Question answer strings 
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Fig. 4. Confusion Matrix of predicted questions 
 

 
 

Fig. 5.  Precision-Recall Curve 

 
 

Fig. 6. A comparative analysis of different algorithms measures 
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Fig. 7. Histogram comparative analysis of different algorithms measures 
 
 

 
 

Fig. 8. Receiver Operating Characteristic Curve 
 

5. DISCUSSION  
 
The script then creates an instance of the 
QuestionGenerator class and assigns it to the 
variable qg. The generate () method of the qg 
object is called to create a list of question-answer 
pairs based on the input text. The method takes 
several arguments, including the input text, the 
number of questions to generate, the desired 
answer style, and whether to use a QA evaluator. 
The generated question-answer pairs are 
returned as a list and assigned to the variable 
qa_list. The print_qa() function is called to print 
the generated question-answer pairs. The 
function takes two arguments: the list of 
question-answer pairs and whether to show the 
answers or not, as specified by the --
show_answers argument. That's a summary of 
what this script does. Overall, it's a useful tool for 
generating pseudo questions and answers from 

text, which could be helpful for tasks like building 
chatbots or generating study aids for students. 
 
Humans rely heavily on their vast store of 
common sense and prior information to help 
them understand what they read. To achieve the 
same results with machine reading, a 
knowledge-based MRC is presented. The 
question of how to most efficiently integrate and 
use new information is continuing. One problem 
is that integrating text in context and questions 
with the structure of information held in 
knowledge bases is challenging. The success of 
knowledge-based MRC, on the other hand, 
depends heavily on the accuracy of the 
information it uses. Knowledge base construction 
is labor-intensive and time-consuming. Also, 
knowledge bases are often deficient, so it's not 
always easy to find relevant external information 
to back up response prediction and reasoning. 
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More research is needed on how to combine 
knowledge graphs with machine reading 
comprehension effectively. 
 

6. CONCLUSION  
 
MRC is an approach to learning that uses 
conversational techniques to enhance passage 
comprehension, such as the use of linked 
question and response procedures. The 
technology has shown promise in outperforming 
humans on benchmark datasets, but further 
advancement toward true understanding would 
need improved datasets, evaluation criteria, and 
models. Models developed using the MRC 
facilitate the summarization of texts in several 
languages from topical, conceptual, and temporal 
viewpoints. Using logistic regression, k-nearest 
neighbors, and random forest analysis This 
approach can aid in the summarization of 
multilingual texts with the use of numerous MRC 
models that are presently in development, and it 
will incorporate topic-oriented, concept-oriented, 
and time-oriented views. 
 

7. FUTURE ENHANCEMENT  
 
Through the use of self-training, we produce 
pseudo-labeled training data with which to train 
the model and boost its accuracy and 
generalization effectiveness. Nevertheless, 
training a model repeatedly using our self-
training method takes a long time and is 
inefficient; therefore, we believe it might be 
improved upon. Unfortunately, our methodology 
is limited to only those three jobs and won't work 
for any other MRC problems. In the future, we'd 
like to investigate more advanced multimodal 
approaches for automated text reading. 
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