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Abstract: Ionizing radiation (IR) can induce some associated pathological conditions due to nu-
merous cell damages. The influence of sex is scarcely known, and even less known is whether the
effect of antioxidants is sex-dependent. Given the increased use of IR, we investigated whether male
human umbilical vein endothelial cells (MHUVECs) and female human umbilical vein endothelial
cells (FHUVECs) respond differently to IR exposure and whether the antioxidants 10 mM taurine
(TAU) and 5 mM N-acetylcysteine (NAC) can prevent IR-induced damage in a sex-dependent way. In
untreated cells, sex differences were observed only during autophagy, which was higher in FHUVECs.
In non-irradiated cells, preincubation with TAU and NAC did not modify viability, lactate dehydroge-
nase (LDH) release, migration, or autophagy, whereas only NAC increased malondialdehyde (MDA)
levels in FHUVECs. X-ray irradiation increased LDH release and reduced viability and migration in
a sex-independent manner. TAU and NAC did not affect viability while reduced LDH release in irra-
diated cells: they have the same protective effect in FHUVECs, while, TAU was more protective than
NAC in male cells.. Moreover, TAU and NAC significantly promoted the closure of wounds in both
sexes in irradiated cells, but NAC was more effective at doing this in FHUVECs. In irradiated cells,
TAU did not change autophagy, while NAC attenuated the differences between the sexes. Finally,
NAC significantly decreased MDA in MHUVECs and increased MDA in FHUVECs. In conclusion,
FHUVECs appear to be more susceptible to IR damage, and the effects of the two antioxidants present
some sex differences, suggesting the need to study the influence of sex in radiation mitigators.
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1. Introduction

It is well established that sex is a major determinant in physiology and pathology [1]
which influences many cellular processes, including the cellular redox balance [2–6]. How-
ever, it is not yet clearly known whether antioxidant activities are influenced by sex, al-
though some phenolic antioxidants [7,8] and glutathione [9,10] display sex-gender-specific
activities.

In humans, there has been an increase in ionizing radiation (IR) exposure because of
defence sectors, the nuclear power industry, and health care’s use of IR [11]. Importantly,
a personalized risk assessment of IR exposure for health professionals and other work
sectors, including spaceflight, is still missing [12]. Demographic factors, such as sex, seem
to influence IR sensitivity; unfortunately, only a few relevant studies are available [13].
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The International Commission on Radiological Protection (ICRP) does not recommend
the radiosensitivity of distinct cohorts [13]. Nevertheless, available findings suggested
that women have a larger radiosensitivity than men [13]. For example, the risk of solid
cancer-induced irradiation is larger in women than in men (about 2-fold), and this risk is
independent of the exposure mechanism [14]. IR exposure can induce radiation-associated
pathology [13,15–19] through reactive oxygen species (ROS). For example, acute low doses
of X-rays increase apoptosis in endothelial cells [20], whereas IR exposure produces an
increase in autophagy, which is a process implicated in the elimination of damaged intracel-
lular structures that induces vascular injury and endothelial dysfunction [21]. Importantly,
endothelial dysfunction has a role in radiation-induced cardiovascular diseases [19,22–25].
Despite sex differences, both men and women receive the same protection standard, even
though women have more cancers and cardiovascular diseases following nuclear acci-
dents [13].

Damage reduction induced by IR is based on antioxidants [26–28] and/or glutathione-
elevating compounds [29]. Different natural antioxidants are present in foods, such as
taurine (TAU), and they may be beneficial for many diseases characterized by oxidative
stress, such as diabetes mellitus [30,31], since the TAU transporter is also inversely linked to
retinopathy [32] and blood hypertension [33]. In the human body, TAU is produced by the
oxidative catabolism of cysteine or by oxidation of hypotaurine [34]. It also has antioxidant
effects due to multiple mitochondrial or non-mitochondrial mechanisms, but it does not act
as a classical scavenger of ROS generation [35]. For example, it detoxifies H2O2, hydroxyl
radicals, and nitric oxide, and it is a cytoprotective agent attenuating lipid peroxidation
and calcium overload [35]. TAU is an attractive candidate for the prevention of IR-induced
damage due to its high safety, although its mechanism is still unclear [28]. In addition,
exposure to high doses of IR increases TAU urinary excretion [36], and cancer patients are
TAU-depleted after cytotoxic chemotherapy and/or radiation therapy [37]. However, it is
not known whether the protective effects of TAU against cellular damage are influenced
by sex. However, in some experimental models, such as hereditary cardiomyopathy of
the hamster, TAU reduces heart weight only in males, but it decreases early mortality in
both sexes [38]. Finally, TAU neuroprotective action versus pilocarpine-induced seizures is
present only in males [39].

N-acetylcysteine (NAC) is a synthetic acetyl derivative of cysteine which is clinically
used in paracetamol intoxication and as a mucolytic agent [40]. However, its clinical
use is expanding as it is also used for renal protection, atrial fibrillation [40,41], and in
the treatment of psychiatric and neurological disorders, such as autism, addiction, and
depressive disorders, where it has some beneficial effects [40]. It is also present in over-
the-counter nutritional supplements as an antioxidant [40] as it can prevent or attenuate
ROS-induced damage favouring glutathione formation [29,40]. Recently, a new antioxidant
mechanism of NAC was proposed based on its capacity to break thiol proteins generating
free thiols, which have larger antioxidant activity than NAC [42]. Overall, NAC use appears
to be safe [40].

Thiol NAC reduces IR damage in many tissues and cells [29,43–45], and it is also
implicated in cell apoptosis and autophagy of endothelial cells [46–50]. In addition, NAC
pre-incubation is unable to reduce radiation-induced ICAM-1 expression in irradiated
human umbilical venous endothelial cells (HUVECs) [51].

Nevertheless, the majority of glutathione investigations enrolled a single gender, and
sexual dimorphisms in glutathione metabolism and glutathione-dependent signaling have
been reported [10], which reflects sex differences in human diseases, such as cardiovascular
diseases, metabolic disorders, and neurodegenerative diseases, such as Alzheimer’s disease
and Parkinson’s disease [10].

The purpose of this work is to understand whether the risks of radiation exposure are
sex-dependent in male and female HUVECs (MHUVECs and FHUVECs, respectively), and
to understand whether TAU and NAC can prevent IR-induced damage in a sex-dependent
way given their high safety profiles and low costs [52,53].
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2. Methods
2.1. Donors

Umbilical cords from healthy human male and female neonates which were vaginally
delivered at term (37–42 weeks) at the Obstetrics and Gynecology Clinic at the University
of Sassari were selected from healthy, non-obese, and non-smoking mothers who were
drug-free, except for folic acid and iron supplementation. HUVECs were obtained only
from the umbilical cords of normal-weight neonates, according to Bertino et al. [54] (2430–
4050 and 2550–4190 g for males and females, respectively, which represented the 10th and
90th centiles in Ines charts). Informed consent was obtained from the mothers of all subjects
donating umbilical cords following the Declaration of Helsinki.

2.2. Cell Isolation and Characterization

Primary female HUVECs (FHUVECs) and male HUVECs (MHUVECs) were isolated
using collagenase treatment (Sigma-Aldrich, Milano, Italy), as previously described by
Addis et al. [55], and cultured in plates pre-coated with 1% gelatine (Sigma-Aldrich, Milano,
Italy) in M199 medium (Life Technologies, Monza, Italy) supplemented with 10% fetal
bovine serum (FBS) (Life Technologies, Monza, Italy), 10% new born calf serum (NBCS)
(Life Technologies, Monza, Italy), 1% antibiotic/antimycotic (Sigma-Aldrich, Milano, Italy),
and 2 mM of L-glutamine (Sigma-Aldrich, Milano, Italy) until confluence in a 5% CO2
humidified atmosphere.

As previously described [55], cultured cells were characterized as endothelial cells
using the exhibition of cobblestone morphology when they were contact-inhibited and an
evaluation of the expression of the von Willebrand factor, which is a glycoprotein that is
constitutively stored in intra-endothelial Weibel–Palade granules.

FHUVECs and MHUVECs were used at passage 3 to ensure their endothelial charac-
teristics, and all experiments were conducted in duplicate or triplicate. Twenty-four hours
before experiments, 50,000 cells at P3 for each experimental condition were suspended in
M199 medium without phenol red (Life Technologies, Monza, Italy) and supplemented
with 5% FBS and 5% new born calf serum (NBCS) (Life Technologies, Monza, Italy), 1%
antibiotic/antimycotic (Sigma-Aldrich, Milano, Italy), and 2 mM of L-glutamine (Sigma-
Aldrich, Milano, Italy) to minimize the potential effect of sex hormones contained in the
bovine serum.

2.3. Experimental Procedures

The experimental groups were: a) non-irradiated HUVECs (basal cells, 10 mM TAU-
and 5 mM NAC –pre–treated cells) and b) irradiated HUVECs (untreated cells irradiated
with 1.6 and 3.2 Gy X-rays; 10 mM TAU-pre-treated and 1.6 and 3.2 Gy irradiated cells; and
5 mM NAC-pre-treated and 1.6 and 3.2 Gy irradiated cells).

Cells were pre-treated with TAU 10 mM or NAC 5 mM (Sigma-Aldrich, Milano, Italy)
24 h before irradiation. Concentrations of the antioxidants were chosen based on the
data available in the literature on HUVECs [56–60]. Untreated and pre-treated cells were
irradiated. The irradiation was performed through an X-ray tube working at 80 kV and
5 mA (Gilardoni S.p.A, Italy). A Plexiglas layer 1 cm thick filtered the low energy part
of radiation. The dose rate of about 0.2 Gy/min was continuously monitored by a DAP
camera (Dose Area Product, VacuDAP by VacuTEC, Germany) placed together with the cell
holder (microvials or multiwells). The following X-ray doses were used for the experiments:
1.6, 3.2, 6, and 12 Gy. At the highest doses (6 and 12 Gy), the decrease in the viability was
higher than 50%, and the increase in LDH release was about 80% in male and female
HUVECs. Therefore, these doses were not used for subsequent analysis.

After irradiation, the cells from each vial were seeded in a 96 well for each experimental
condition (about 15,000 cells/well in triplicate). Crystal violet assay and LDH release were
used to assess cell viability and cytotoxicity 24 h after the seeding. Basal cells were subjected
to the same experimental conditions, except for irradiation and pre-treatments.
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2.4. Cell Viability

Cell viability was determined using the crystal violet assay according to [61]. The ab-
sorbance was recorded at 540 nm, and the percentage of viability was calculated compared
with basal cells, for which a value of vitality equal to 100% was assumed.

2.5. LDH Assay

LDL release was measured in a culture medium from irradiated and non-irradiated
cells pre-treated or not treated with TAU and NAC using the LDH Cytotoxicity Detection
kit (Roche Diagnostics, Monza, Italy) and following the manufacturer’s instructions. LDL
release was expressed as the percentage of the LDH measured in the medium divided by
the LDH release measured after cell treatment with 2% Triton X-100 (positive control, 100%
LDH release).

2.6. Wound Healing Assay

Cells were grown to confluence in gelatine-coated 12-well plates in a complete medium.
Confluent cells were manually scratched in each well using a p10 pipette tip, and the cells
were cultured for 48 h. Photographs were taken just after scratching and after 6, 9, 24, and
48 h of incubation at a × 4 magnification. The percentage of wound closure was calculated
using ImageProPlus software (Media Cybernetics, Inc, Rockville, MD, USA) by measuring
the wound area at each time point compared with the initial area measured at the time of
the scratch. Each sample was assayed in duplicate.

2.7. MDA Determination

MDA was determined as previously described [62] using 10 µg of cell lysates. The
quantification was performed spectrophotometrically at 535 nm by measuring the ab-
sorbance produced by 100 µL of the sample. Calibration curves were built with standards
of MDA at 5, 10, 25, and 50 µM. Each sample was assayed in duplicate.

2.8. Western Blotting

The protein concentration was quantified using the BCA protein assay kit (Thermo Sci-
entific, Waltham, MA, USA). For the Western blot analysis, 25 µg of solubilized protein was
electrophoretically resolved by 4–15% SDS-PAGE (100 V, 2 h, 24 ◦C) and then transferred
to a PVDF membrane (250 mA, 65 min, 4 ◦C) using a Transblot-turbo system (Bio-Rad,
Milano, Italy). The membranes were blocked in 5% (w/v) skim milk (Sigma-Aldrich,
Milano, Italy) in 150 mM Tris buffer (Sigma-Aldrich, Milano, Italy) and 20 mM Tris-HCl,
pH 7.2 (Sigma-Aldrich, Milano, Italy) at 24 ◦C for 1 h and then incubated overnight at 4 ◦C
with the following antibodies, all produced in rabbit and diluted 1:1000: α-actin (Sigma-
Aldrich, Milano, Italy), LC3 (MBL, Milano, Italy), and caspase-9 (Cell Signaling Technology,
Milano, Italy). After washing, the blots were incubated for 1 h with horseradish peroxidase
(HRP)-conjugated secondary antibody (Cell Signaling Technology, Milano, Italy) (1:2000).
Antibody binding was detected using a chemiluminescence reaction (Cell Signalling Tech-
nology, Danvers, MA, USA) with the Bio-Rad Chemi Doc instrument (Berkeley, CA, USA).
Band volume analysis was performed using Image Lab 4.0 software (Bio-Rad Laboratories,
Berkeley, CA, USA), and densitometric data were normalized based on α-actin levels,
which did not differ in MHUVECs and FHUVECs [55].

2.9. Statistical Analysis

Data were reported as the mean ± standard deviation (SD). Statistical analysis was
performed using Two Way Analysis of Variance followed by the Pairwise Multiple Com-
parison Procedures to analyze the effect of sex, X-rays, and treatments using Sigma-Stat 3.1
software (Systat Software, Erkrath, Germany). The distribution of samples was assessed
via the Kolmogorov–Smirnov and Shapiro tests.

Linear regression analysis was performed by plotting time against the percentage of
wound closure and comparing slope variations through a global test of coincidence using
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Sigma-Stat 3.1 software (Systat Software, Erkrath, Germany). A p ≤ 0.05 was considered
statistically significant.

3. Results
3.1. Characteristics of Donors

The mothers of female and male neonates did not differ significantly in age and body
weight, and neonates of both sexes did not diverge significantly in body weight (Table 1).

Table 1. Physical data of the enrolled cohorts.

Age of Mothers
(Years)

Body Weight
of Mothers (kg)

Body Weight of
Neonates (kg)

Males (n = 9) 31.2 ± 5.9 65.3 ± 7.0 3.3 ± 0.3
Females (n = 10) 30.6 ± 4.4 62.3 ± 6.4 3.3 ± 0.4

Values are reported as the mean ± SD.

3.2. Effect of X-rays on HUVECs Viability and Lactate Dehydrogenase (LDH) Release

Viability and LDH release in basal cells, a measure of cytotoxicity, did not present
sexual dimorphism. The irradiation of cells with X-rays at doses of 1.6 and 3.2 Gy re-
duced cell viability in a statistically significant manner, but this occurred regardless of
cell sex (Figure 1A,C), and irradiation increased LDH release in a dose-dependent manner,
regardless of cell sex (Figure 1B,D).
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Figure 1. The effects of TAU and NAC pre-treatments on viability (A,C) and LDH release (B,D) in
non-irradiated and irradiated female and male HUVECs. Data are reported as the means ± SD of
6–7 samples for each sex and dose. ◦ represents a p < 0.05 versus non-irradiated cells in MHUVECs,
while * represents a p < 0.05 versus non-irradiated cells in FHUVECs.

3.3. Effect of X-rays on HUVECs Migration

Migration, expressed as the percentage of wound closure that did not diverge between
the sexes, and closure were completed in 48 h in basal cells. X-rays, instead, significantly
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reduced wound closure in both MHUVECs and FHUVECs (Table 2). In detail, at 1.6 Gy, both
male and female cells showed a slower and partial recovery compared with basal cells and
had no significant sex difference (Table 2), which was also confirmed by linear regression
analysis that showed similar slopes when 1.6 Gy irradiated MHUVEC were compared
with FHUVECs (y = 1.351x + 0.784 and y = 1.454x + 2.131 for MHUVECs and FHUVECs,
respectively). A 3.2 Gy X-ray produced a longer delay in wound closure than 1.6 Gy, and
its effects were associated with sex, which was also confirmed by linear regression analysis
which showed that the slopes significantly diverged between 3.2 Gy-irradiated MHUVECs
and 3.2 Gy-irradiated FHUVECs (Figure 2), suggesting that wound repair was more rapid
in FHUVECs than in MHUVECs.

Table 2. The effect of X-rays on HUVECs migration.

6 h 9 h 24 h 30 h 48 h

Basal
MHUVECs 14.6 ± 5.7 21.8 ± 6.8 71.5 ± 19.8 86.1 ± 9.2 97.7 ± 2.6
FHUVECs 20.2 ± 8.9 30.1 ± 12.3 75.6 ± 22.1 85.6 ± 15.7 98.5 ± 1.9

1.6 Gy MHUVECs 7.7 ± 4.8 ◦ 12.7 ± 8.9 33.6 ± 20.8 ◦ 46.1 ± 28.1 ◦ 62.6 ± 36.6
FHUVECs 9.2 ± 5.2 * 14.6 ± 6.8 * 41.0 ± 15.9 * 51.4 ± 23.6 * 66.7 ± 30.2

3.2 Gy MHUVECs 9.5 ± 6.4 15.4 ± 3.9 22.1 ± 14.3 ◦ 26.4 ± 14.8 ◦ 32.7 ± 17.9 ◦

FHUVECs 13.0 ± 8.3 14.8 ± 8.9 * 31.9 ± 18.0 * 37.7 ± 21.9 * 53.3 ± 37.1 *

Data are reported as the means ± SD of the percentage of wound closure in FHUVECs and MHUVECs of
5 independent experiments performed in duplicate (for each sex and dose). ◦ represents a p < 0.05 versus
non-irradiated cells in MHUVECs, while * represents a p < 0.05 versus non-irradiated cells in FHUVECs.
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Figure 2. Linear regression analysis of cell migration in MHUVECs (�) and FHUVECs (♦) after
exposure to 3.2 Gy of X-rays.

3.4. Effect of X-rays on Autophagy

Autophagy is a catabolic process that delivers cellular constituents, including dam-
aged or superfluous organelles and long-lived proteins, to lysosomes for degradation and
recycling [21]. In basal conditions, it was measured via a LC3II/I ratio and was significantly
higher in FHUVECs. After 3.2 Gy irradiation, the LC3II/I ratio significantly increased
(about 110%) only in FHUVECs (Figure 3A), while it was similar to those of basal cells in
irradiated MHUVECs.
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3.5. Effect of X-rays on Lipid Peroxidation

Malondialdehyde (MDA) levels did not significantly diverge in basal male and female
HUVECs, but they significantly increased in the irradiated cells of both sexes. In partic-
ular, the increase was significantly more pronounced in FHUVECs than in MHUVECs
(Figure 3B).

3.6. Effect of Pre-Treatments on HUVECs Viability and LDH Release

In basal FHUVECs and MHUVECs, 10 mM TAU and 5 mM NAC did not affect
viability and LDH release (Figure 1A,B), whereas they reduced LDH release in irradiated
cells (Figure 1C,D). In detail, 10 mM TAU and 5 mM NAC had both a significant protective
effect in LDH reduction in FHUVECs, and TAU was more protective in male cells than
NAC (Figure 1C,D). In fact, after irradiation, TAU reduced LDH release in MHUVECs,
while NAC had no effect.

3.7. Effect of Pre-Treatments on HUVECs Migration

TAU and NAC did not modify the migration of non-irradiated HUVECs for both sexes
(Figure 4A,B). However, TAU significantly promoted the closure of the wound in 1.6 and
3.6 Gy irradiated cells, especially in the late phase (48 h), but this occurred independently
of cell sex (Figure 4A,B).

Moreover, linear regression analysis showed that the slopes significantly diverged
between 3.2 Gy irradiated and non-irradiated TAU-pretreated MHUVECs (Figure 4C). No
other statistically significant differences emerged from the linear regression analysis.

NAC pre-incubation did not affect male and female HUVECs migration when com-
pared with basal cells (Figure 5A,B). The regression analysis evidenced a significant differ-
ence in slopes between NAC-irradiated MHUVECs versus non-irradiated NAC-pretreated
MHUVECs (Figure 5C), which indicated a positive effect of NAC on cellular migration.
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Moreover, linear regression analysis showed that slopes significantly diverged between
MHUVECs and FHUVECs pretreated with NAC and exposed to 1.6 Gy (Figure 5D),
which indicated that NAC is more effective in FHUVECs. No other statistically significant
differences emerged from the linear regression analysis.
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Figure 5. (A,B) The effect of 5 mM NAC on the migration of MHUVECs and FHUVECs. (C,D) Linear
regression analysis of data illustrated in A e B on the migration of 1.6 Gy-irradiated pre-treated
with NAC in MHUVECs (�) and FHUVECs (♦). (D) Linear regression analysis of data illustrated
in B of the migration of 1.6 Gy-irradiated MHUVECs pre-treated with NAC (�) and non-irradiated
MHUVECs pre-treated with NAC (N).

3.8. Effect of Pre-Treatments on Autophagy

In non-irradiated male and female cells, 10 mM TAU and 5 NAC pre-incubation
did not significantly affect autophagy (expressed as the LC3II/I ratio), but in irradiated
FHUVECs, they attenuated the autophagy in a non-statistically significant manner as they
were practically inactive in irradiated MHUVECs (Figure 3A).
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3.9. Effect of Pre-Treatments on Lipid Peroxidation

Ten mM TAU pre-incubation did not significantly affect lipid peroxidation in both non-
irradiated and irradiated MHUVECs and FHUVECs compared with basal cells (Figure 3B),
although a non-significant reduction in MDA was observed in FHUVECs.

However, NAC pre-incubation highlighted sex differences in the lipid peroxidation
as MDA levels were statistically significantly higher in FHUVECs than in MHUVECs
(Figure 3B).

4. Discussion

The biological and molecular mechanisms underlying IR damage are still not fully
understood [19], and it is even less known whether IR damage is influenced by sex. In this
study, we show that viability, LDH release, cell migration, and lipid peroxidation do not
vary between sexes in basal conditions, while autophagy is higher in female cells than in
male ones. Globally, this indicates that sex differences are parameter specific, which has
already been shown in other experimental models [55,63,64]. Indeed, the data regarding
autophagy are not in line with previous results [55], but the discrepancy probably depends
on differences in serum concentrations in the culture medium.

Sexual polymorphism is also related to cell migration and MDA levels in irradiated
cells, whereas changes in cell viability and cytotoxicity are sex-independent. These findings
indicate that IR amplifies sex differences in a parameter specific manner. Radiation-induced
autophagy may have a different role in cell fate depending on the dose and duration of
radiation leading to survival or death [65]. As a close link between oxidative stress and
autophagy was described [63,66], the observed increase in lipid peroxidation could explain,
at least in part, the increase in autophagy observed in irradiated cells. However, it does
not explain the results obtained for the cells preincubated with NAC where both irradiated
and non-irradiated lipid peroxidation are higher in female cells, but the autophagy is
scarcely affected. Other sex differences after irradiation have been described in human
male lymphocytes, which are less sensitive than female cells when exposed to 30 Gy
X-rays [67], but other studies do not observe any significant sex differences in human
hematopoietic stem cells irradiated with X-rays (0.5 and 2 Gy) [68]. This suggests that sex
differences are related to the cell type, the radiation dose, and the studied parameter.

The development of non-toxic agents to combat radiation-induced endothelial dys-
function is of paramount importance because alterations in endothelial function affect the
control of vascular tone, angiogenesis, hemostasis, inflammation, vascular integrity, and
vessel repairing and the provision of an antioxidant, anti-inflammatory, and antithrombotic
interface [69]. Some of these processes appear to be sex-dependent [70]. In non-irradiated
cells, 10 mM TAU does not modify any of the studied parameters compared with basal cells,
except for the LC3II/I ratio. In fact, TAU attenuates the sex difference in the autophagic
response. In irradiated cells, TAU reduces cytotoxicity in male and female cells, and is
ineffective regarding viability. In addition, it promotes cell migration after radiation at
24 and 48 h and decreases the autophagic process expressed as the LC3II/I ratio. It does
not affect MDA levels. In particular, TAU increases the migration capacity, especially in
the late phases in both sexes. TAU prevents apoptosis induced by hyperglycemia [57,71],
lipopolysaccharide, and tumor necrosis factor-alpha stimulation and reduces oxidative
stress [72] in HUVECs and other human endothelial cells not stratified for sex. In vitro,
it declines high potassium-induced contraction in rabbit ear arteries [73]. Furthermore,
TAU administered in vivo attenuates low-density lipoprotein-induced endothelial dysfunc-
tion [74]. Globally, the above data also suggest that the activity of TAU is target-specific,
and its effect may be due to a combination of different mechanisms as proposed by Christo-
phersen [36], although the author does not focus on the sex effect. The small beneficial
effects observed regarding TAU could be of great relevance in cancer irradiated patients
who appear to be TAU-depleted after cytotoxic chemotherapy and/or radiotherapy [37].

Pre-treatment with the glutathione precursor NAC [29,40] reduces cytotoxicity in male
and female cells and promotes wound closure at 24 h and 48 h after radiation, particularly
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in FHUVECs. Moreover, NAC cancels sex differences in autophagy in irradiated and
non-irradiated cells. Finally, in both irradiated and non-irradiated cells, NAC exposure
brings out a sex difference in MDA levels, which are higher in females. Millimolar NAC
leads to a higher rate of wound closure than the controls 36 h after wounding in human skin
fibroblast cell lines not stratified for donor sex [75]. The sex differences observed with NAC
are not surprising because glutathione metabolism shows significant sex differences [10];
for example, intracellular glutathione synthesis requires glutamate-cysteine ligase, which
is less expressed in the female liver than in the male liver, at least in rats [62].

Globally, our data show some small protective and sex-specific effects of TAU and
NAC. In particular, both promote a decrease in X-ray-mediated cytotoxicity. TAU is
more effective in promoting wound closure in MHUVECs, while NAC is more effective
in FHUVECs. Moreover, TAU does not affect autophagy, while NAC attenuated the
differences between the sexes observed in the autophagic response.

Finally, a sex-specific effect of NAC on MDA levels can be noted as it increases levels
for females. On the contrary, TAU does not modify this parameter. Overall, these data
suggest that the two antioxidants may mediate sex-specific protective effects through
different mechanisms, although the effect of NAC seems to be more influenced by sex, and
this aspect could be in line with sex differences described in glutathione metabolism and
glutathione cycle [10].

In conclusion, TAU and NAC have similar safety and tolerability in non- irradiated
MHUVECs, while NAC is less safe than TAU in non-irradiated FHUVECs because it in-
creases lipid peroxidation. Cell irradiation increases autophagy only in FHUVECs where it
produces a more marked elevation in MDA and a more rapid wound closure than in MHU-
VECs. In irradiated cells, NAC preincubation has a positive effect on cellular migration and
LDH release, which is more effective in FHUVECs. However, TAU significantly promoted
the closure of the wound and a decrease in LDH release independently of cell sex in the
same experimental conditions. Thus, taurine appears to be more protective than NAC in
male cells.

A further understanding of radiation-induced endothelial dysfunction could lead to
progress in the development of countermeasures, such as antioxidant or mitigator therapies,
for cardiovascular diseases in subjects exposed to radiation.

Finally, our results confirm and stress the importance of reporting cell sex in exper-
iments and including the sex-gender variable in preclinical and clinical research [2] to
understand sex-specific mechanisms and create personalized diagnostic and therapeutic
approaches. Moreover, these results allow us to lay the groundwork for a sex-specific use
of antioxidants.
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