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Abstract

We introduce the neural network architecture SPENDER as a core differentiable building block for analyzing,
representing, and creating galaxy spectra. It combines a convolutional encoder, which pays attention to up to 256
spectral features and compresses them into a low-dimensional latent space, with a decoder that generates a
restframe representation, whose spectral range and resolution exceeds that of the observing instrument. The
decoder is followed by explicit redshift, resampling, and convolution transformations to match the observations.
The architecture takes galaxy spectra at arbitrary redshifts and is robust to glitches like residuals of the skyline
subtraction, so that spectra from a large survey can be ingested directly without additional preprocessing. We
demonstrate the performance of SPENDER by training on the entire spectroscopic galaxy sample of SDSS-II; show
its ability to create highly accurate reconstructions with substantially reduced noise; perform deconvolution and
oversampling for a superresolution model that resolves the [O II] doublet; introduce a novel method to interpret
attention weights as proxies for important spectral features; and infer the main degrees of freedom represented in
the latent space. We conclude with a discussion of future improvements and applications.

Unified Astronomy Thesaurus concepts: Astronomy data modeling (1859); Galaxy spectroscopy (2171)

1. Introduction

Spectroscopy is critical to understanding the physical
processes that happen in galaxies across cosmic time. But
despite the availability of millions of galaxy spectra from large
surveys and dedicated programs, we still lack models that
capture their full distinctiveness and diversity, especially when
redshift evolution is to be taken into account. Theoretical
models cannot reproduce high-quality observed spectra, not
even when restricted to specific galaxy subpopulations (e.g.,
Tojeiro et al. 2011). Many physics-based approaches also treat
separately the continuum from stellar emission and emission
lines from nebular emission (Baldwin et al. 1981; Kewley
et al. 2019). This practice creates a disconnect between a
galaxy’s stellar population and its gas content, which then
affects the capabilities of subsequent analysis efforts
(Cappellari 2017; Leja et al. 2017).

On the other hand, data-driven spectrum models have been
limited to high-quality observations of nearby galaxies, where
the cosmological redshift can be ignored (Moustakas et al.
2006; Brown et al. 2014), or to a reduced wavelength range
that is accessible for all galaxies after they have been
transformed back to restframe (Yip et al. 2004; Portillo et al.
2020; Teimoorinia et al. 2022). Either way reduces the number
of usable galaxies or the wavelength range over which galaxies
can be useful. The assumption that any given spectrum can be
represented by a linear combination of a small number of basis
vectors (Yip et al. 2004) or prototypical templates (Calzetti
et al. 1994; Kinney et al. 1996) further limits the complexity of
data-driven spectrum models. Despite their simplicity, linear
models are widely used for inferring redshifts from galaxy
spectra (Bolton et al. 2012; Ross et al. 2020) or broadband
photometry (Benitez 2000; Brammer et al. 2008), as well as for

the generation of mock spectra from large cosmological
simulations (Fagioli et al. 2018; Wechsler et al. 2022).
In summary, neither data-driven nor theoretical models

currently capture the full information content of galaxy spectra.
This means, e.g., that we cannot robustly marginalize over
galaxy properties when inferring spectroscopic redshifts,
causing catastrophic outliers from line misidentification (Cunha
et al. 2014). It is similarly difficult to reliably assess whether a
spectrum as a whole or over some smaller wavelength range
shows unusual behavior (Lochner & Bassett 2021), or estimate
the effective number of clusters or degrees of freedom in
galaxy spectra (Rahmani et al. 2018; Fraix-Burnet et al. 2021).
However, the widespread adoption of template libraries

suggests that galaxy spectra in fact occupy a low-dimensional
manifold. More explicitly, Portillo et al. (2020) demonstrated
that a high-fidelity reconstruction can be achieved by an
autoencoder architecture (AE; Hinton & Zemel 1994; Kingma
& Welling 2013) with a latent space of just six dimensions.
Teimoorinia et al. (2022) improved upon that work by
introducing convolutional elements into the AE to aid the
extraction of correlated features from the spectra. We further
advance this approach with a specifically designed architecture
that combines an attentive convolutional encoder with an
explicit redshift transformation after the decoder. It allows the
exploitation of the full spectrum of all galaxies in a survey to
form a supermodel that exceeds the wavelength range and
spectral resolution of any individual spectrum.

2. Data

We retrieve ≈650,000 spectra from the Main Galaxy Sample
of the Sloan Digital Sky Survey (SDSS-II; Strauss et al. 2002),
which is magnitude limited at Petrosian r< 17.77 and covers
redshifts up to z 0.5max » , with the large majority at z 0.25.
We use calibrated spectra, inverse variance weights, and masks
from the spectroscopic reduction of SDSS Data Release 16
(Ahumada et al. 2020). We select spectra classified as galaxies,
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with valid redshift estimates and redshift errors σz< 10−4, and
without quality flags that would indicate issues with spectro-
photometric calibration or sky subtraction. After padding into a
fixed length array, each spectrum has M= 3921 spectral
elements and covers the wavelength range λ= 3784...9333 Å.
We normalize the spectra by dividing out the median spectral
flux over the range λ= 5300...5850 Å/(1+ z), choosing a
restframe normalization to avoid a redshift dependence of the
signal amplitude (see Section 4.4 for more discussion) and this
specific region because it is devoid of strong emission and
absorption lines. We also add to the masks regions of 5Å
around the 100 strongest sky lines; doing so should account for
any residuals of the skyline subtraction procedure in the DR16
pipeline. In masked areas, we set the weights to zero, but leave
the spectra unchanged.

3. Architecture

Figure 1 shows a sketch of the SPENDER architecture, whose
elements we discuss in detail below. As usual for an AE model,
it is trained end-to-end with a (weighted) MSE loss

w y f yl
L

z
1

2
, , 1

m

M

m
2åq = - q( ) ( ( ( )) ) ( )

where y MÎ denotes an observed spectrum at redshift z,
y f y z,¢ º q ( ) its reconstruction by the autoencoder with

parameters θ, w 1m m
2sº the inverse variance weight of the

mth spectral element, and e the element-wise multiplication.
This loss is proportional to the log-likelihood for normal-
distributed data and explicitly allows the incorporation of
heteroscedastic uncertainties and variable masking through
element-wise weights.

3.1. The Encoder

Our central design choice is to leave the data in the given
form, i.e., in the observed frame, not in restframe. Doing so
preserves all aspects—and the entire wavelength range—of the
observed spectra. But this decision poses a greater challenge
for the encoder because it is now confronted with varying
locations for spectral features. A common machine-learning
technique for searching patterns across the data domain is
called attention, which involves learning to weigh features
from the input data that are beneficial for subsequent tasks (see,
e.g., Chaudhari et al. 2021 for a recent review of attention
methods). As we expect such features to be correlated between
sharp lines or breaks and the continuum, we chose the
convolutional encoder architecture from Serràet al. (2018) to
extract latent parameters from observed spectra. The architec-
ture starts with three convolutional layers with progressively
wider kernel sizes (5, 11, 21), trainable PReLU activations (He
et al. 2015), and max pooling, which translates M= 3921
spectral elements into 512 channels for 72 wavelength
segments.3 It then applies attention in wavelength direction to
these channels, i.e., it splits the channels into two parts, h and k
( 256 72Î ´ ), and combines them as

e h k h asoftmax , 2= º· ( ) · ( )

where the dot product and the softmax operate on the last, i.e.,
the wavelength dimension. The vector a contains the attention
weights, indicating whether and where relevant signals have
been found, so that their corresponding values are promoted to
the attended features e. These are then further compressed by a

Figure 1. The autoencoder architecture of SPENDER with an attentive convolutional encoder and an explicit redshifting, resampling, and convolution transformation
after the decoder.

3 The stride of the MaxPool layers was not specified by Serràet al. (2018). We
adopted the conventional approach to match the preceding convolution kernel
sizes, which results in a receptive window of 1208 spectral elements (Araujo
et al. 2019) and a relatively strong wavelength compression. This choice can be
tuned if larger receptive windows or less spectral compression is desired.
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multilayer perceptron (MLP) to the latent variables s SÎ .
This architecture is capable of accounting for the apparent shift
of spectral features in galaxies at different redshifts. It behaves
similar to traditional redshift estimation techniques that scan for
particular spectral lines (e.g., SubbaRao et al. 2002) and,
because of the wide convolution kernels, naturally folds in
continuum features to form a highly informative latent
representation.

3.2. The Decoder

The decoder is a simple expansive 3-layer MLP with (64,
256, 1024) hidden dimensions, which generates an internal
restframe representation x RÎ of the spectrum, with R�M.
This internal model is then analytically redshifted to the known
galaxy redshift z and resampled to the observed spectrum
wavelengths and resolution M. A convolution with the line-
spread function (LSF) can also be performed at this stage (we
will discuss this option further in Section 4.2). Applying the
redshifting transformation explicitly in the generator part of the
autoencoder removes the ambiguity between the location of
spectral features in restframe x and in the observed frame y. It is
thus much easier to train the critical aspect, namely the spectral
encoding of restframe features, without also having to learn the
analytically known effects of redshift. A similar approach was
employed by Lanusse et al. (2021) for encoding galaxy images
under variations of the optical point-spread function.

We choose the activation function, proposed by Alsing et al.
(2020) specifically for galaxy spectra,

 x x xa 1 1 exp . 3g g b= + - + -( ) [ ( ) ( ( ))] ( )

Compared to a more conventional ReLU, this function includes
additional trainable parameters, which help generate spectra
with flat and sharp features. By initializing β= 1 and γ= 0,
the MLP produces values very close to 0. We add 1 to the
output of the last activation because our observed spectra have
been normalized to a unit median. The decoder thus has to
learn to deviation from a flat median spectrum.

To generate a complete redshifted spectrum, the restframe
model x must encompass the maximum range of restframe
wavelengths covered by any spectrum in the data set.
Considering SDSS galaxy spectra up to z 0.5max » forces us
to lower minl to z3784 1 max+Å ( ). By the same token, a high-
fidelity resampling operation suggests that the restframe has at
least M z1 max+( ) linearly spaced spectral elements. We
perform the resampling step as a linear interpolation, which
appears sufficient for the SDSS native resolution and LSF.
Should a higher-fidelity resampling be desired, one can
combine it with the LSF convolution using a one-dimensional
version of the method by Joseph et al. (2021). If the
architecture can successfully be trained, the resulting restframe
model will have superresolution over the extended wavelength
range. We will exploit this property in Section 4.2.

3.3. Additional Considerations

The SPENDER architecture provides a clear assignment of
responsibilities across the AE modules. Reading Figure 1 from
right to left, the decoder needs to generate a restframe spectrum
from a low-dimensional latent representation. The encoder is
thus forced to find such a restframe representation when given
an observed, redshifted spectrum and the redshift.

Following a suggestion in Portillo et al. (2020), we
experimented with including data weights w in the encoding
process. One option is to compress the weight vector with a
CNN encoder and use the compressed representation as
additional input variables for the encoder MLP. Doing so
would not encode the location of high and low weights, only
their relative strengths and positions. Instead, we computed
attention weights kw of w in the same way, but by a different
CNN encoder, as for the spectra. Multiplying the weights, i.e.,
computing the attended features as e h k ksoftmaxw w= · ( ),
has the effect of modulating attention, ideally reducing it for
spectral features with low weights. However, we found that the
resulting models achieved essentially the same final loss L, but
the attended features where much less directly tied to
prominent spectral lines and breaks (see Section 4.3). Instead,
a large amount of attention has been expended on regions with
strong sky lines. Moreover, even without encoding weights, the
reconstructions fθ(y, z) are robust around areas with large
artifacts, as we will discuss in Section 4.1. We see no benefit of
providing weights to the encoder and therefore proceed without
doing so.

4. Results

We implement the SPENDER architecture introduced in
Section 3 with pytorch (Paszke et al. 2017), and train it with
70% of the parent sample for 100 epochs with the Adam
optimizer (Kingma & Ba 2015), a learning rate of 10−3, and the
1Cycle schedule (Smith & Topin 2017) on a NVIDIA V100
GPU. Training takes approximately one hour. The remaining
30% of the data are split evenly in validation and test samples.
Column 3 of Table 1 shows the weigthed MSE loss for the
training and validation samples as a function of the
dimensionality of the latent space for the model with
R= 5881—the minimum resolution high enough to prevent
undersampling of the observed model caused by redshifting.
We confirm the findings of Portillo et al. (2020) that models of
galaxy optical spectra with fidelity much better than the noise
level (MSE < 1) can be achieved with few latent parameters,
with S= 6 apparently providing a good trade-off between
reconstruction fidelity and parsimony. We also see that training
loss is only mildly smaller than validation loss, suggesting that
overfitting does not pose a noticeable problem. Changing the
learning rate has little effect, and the spread between different
models in terms of the final loss is on the order of 10−3.

Table 1
Average MSE Loss Values for an Ensemble of 5 SPENDER Models after 100
Training Epochs as a Function of the Dimensionality of the Latent Space S

S LR: R = 5881 SR: R = 11,762, LSF5

S Training Loss Validation Loss Training Loss Validation Loss

2 0.426 0.430 0.425 0.430
4 0.394 0.396 0.392 0.395
6 0.385 0.388 0.385 0.387
8 0.382 0.383 0.381 0.383
10 0.380 0.381 0.379 0.381

Note. Loss values below 1 indicate that the average per-element error is smaller
than the noise level. The first set of models use the lowest resolution (LR) with
R = 5881 necessary to prevent undersampling the SDSS spectra when
redshifted up to z 0.5max = (see Section 3.2). The second set of models use
superresolution (SR) by factor 2 and simultaneously fit for an unknown line-
spread function kernel of width 5 (see Section 4.2).
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Experimenting with a leaky ReLU activation in the decoder
yields only marginally inferior results to the activation function
in Equation (3). We conclude from this that the training
procedure is overall stable, and the final loss likely dominated
by the size, diversity, and effective noise level of the
training data.

4.1. Qualitative Inspection

Figure 2 shows the original SDSS and reconstructed spectra
from SPENDER in the lower-resolution setting with S ä {2, 4, 6,
8, 10} in the latent variables for several galaxies from the
withheld test sample, spanning z= 0...0.2 that is best covered

by the SDSS MGS. All SPENDER models provide an excellent
fit to the data, reducing the effective noise levels by about a
factor of 2. They are essentially indistinguishable from each
other, except in the region of strong emission lines, where
larger latent space dimensionality improves modeling fidelity.
This is most evident from the recovery of the highly variable
behavior of the Hα-[N II] complex (last column) for a star-
forming (first row) to a quiescent galaxy (third row), even in
the presence of substantial line broadening (last row).
As is visible from the left column of Figure 2, the SPENDER

restframe model exceeds the wavelength range of any observed
spectrum, inferring missing parts from similar galaxies at

Figure 2. Example restframe spectra, ordered by redshift (top to bottom), and their reconstruction by 5 SPENDER LR models with different latent space dimensionality
S. The left column shows the entire spectrum. Other columns zoom in to specific emission and absorption lines. Wavelengths that are unobserved or masked by the
processing pipeline are shown in light blue shading.
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different redshifts. The successful establishment of an extended
restframe model is most obviously confirmed by the prediction
of the expected but unobserved [O II]λλ3726,3729 emission in
the first example spectrum of Figure 2.

The SPENDER models yield good reconstructions despite
glitches near and directly at important spectral features (e.g.,
the Na I absorption in second example spectrum), demonstrat-
ing its robustness to observational artifacts. Furthermore, the
model is robust to higher noise levels (as in the third example).
Both findings are remarkable because neither weights w nor
masks are passed to the encoder. This robustness suggest that
the encoder utilizes many correlated features, e.g., the overall
shape of the continuum. During training, when the statistical
weights are available (see Equation (1)), the encoder evidently
learns how to recognize and combine them suitably for good
reconstruction fidelity.

4.2. Superresolution

We can push the excellent modeling capabilities of SPENDER
even further. As the decoder has an explicit resampling
operation (see Section 3.2), we are free to choose both the
properties of the restframe and the observed frame at will. We
could mimic how a SDSS spectrum would appear to a different
instrument. Alternatively, we can also chose to increase
effective resolution of the restframe model. Given that the
models with R= 5881 effectively suppress the noise by about a
factor of 2, it is reasonable to expect that we can increase the
resolution by a similar factor.

But at this point we need to acknowledge the presence of the
LSF that we have ignored so far. The LSF broadens the
observed spectra already at native instrument resolution—the
effective width of the LSF kernel exceeds one pixel of the
spectrograph—which means increasing the resolution now
would be pointless: we would not actually resolve finer
features, just get longer correlations among smaller pixels. We
thus perform an additional convolution with the LSF after the
resampling step, which forces the decoder to learn the LSF-
deconvolved restframe representation. However, we could not
find any publicly available information about the shape of the
LSF kernel for SDSS-II spectra. We therefore set up a LSF
kernel of size 5, and learn the average shape of the kernel
directly from the data, together with all other parameters of the
model. Doing so sounds impossible because the inverse
problem is degenerate: any observed width of a spectral line
could be attributed to its intrinsic width or the width of the LSF
kernel. But the exact degeneracy is broken in our data set as it
comprises spectra at different redshifts. Redshifting causes an
apparent stretch of the intrinsic line width but leaves the LSF
unchanged.

Training a set of new models with R= 11,762 in exactly the
same way as the previous ones produces the MSE losses listed
in the right columns of Table 1. The fidelity is very slightly
improved compared to the lower-resolution models, a mild
indication that the generative model benefits either from
acknowledging the presence of the LSF or from reducing
resampling errors by a higher resolution, or both. Training
times for this model are approximately two hours.

The left panel of Figure 3 shows the learned LSF shape.
Aggregated of the entire data set, it represents the average
amount of broadening that does not depend on redshift or
specific spectral features. As expected, the kernel is peaked in
the center and largely symmetric. These properties are not

enforced during training, exhibiting them must therefore be a
consequence of the broken degeneracy in the data.
The superresolution models are overall noisier than the

lower-resolution ones we inspected in Section 4.1. This is the
expected result of increasing the resolution while attempting to
deconvolve noisy data. Superresolution of factor 4 proved
unadvised with this data set. However, in regions of prominent
features superresolution is effective. The right panel of Figure 3
focuses on the [O II]λλ3726,3729 doublet, whose lines are
heavily blended in the observed SDSS data and are clearly
separated in the SPENDER superresolution model.
We measure the equivalent widths for both of the lines in the

doublet with a Gaussian peak and sloped continuum fit, and
find [O II]λ3729/[O II]λ3726 = 1.27± 0.13, indicative of
relatively low electron density (Osterbrock 1974). To further
determine whether the doublet properties are plausible, we
exploit that the [O II] doublet line ratios are strongly correlated
with those of the [S II]λλ6716,6731 doublet (Zeippen 1982;
Wang et al. 2004), which is accessible for this galaxy (shown in
the right panel of Figure 3). The corresponding ratio [S II]
λ6716/[S II]λ6731= 1.35± 0.09, measured directly from the
SDSS spectrum, is indeed entirely consistent with the predicted
[O II] doublet line ratios from the superresolved restframe
model.
It is important to realize that the recovery of the doublet is

only possible because SPENDER learns from many similar
galaxies, for which the exact positions of the lines with respect
to the wavelength bins varies with their redshifts. The
collective loss is marginally lower when representing this
region of the spectrum with a doublet instead of a single peak.
The flip side of this argument suggest caution when measuring
spectral features from the superresolution model as they may be
prominently biased toward the most common realizations of
such features in the training data.

4.3. Attention

The mechanism by which important features are recognized
is the attention module in Figure 1. It splits the compressed
CNN channels into a set of values h and keys k, and turns the
latter into probabilistic weights a, indicating what is important
for reconstructing the input spectrum. Every spectrum creates

a 256 72Î ´ , i.e., an attention weight for every channel and
every wavelength segment. The final dot product in
Equation (2) applies these weights over all compressed
wavelength segments. It can be thought of as a conventional
search for spectral features like the 4000Å break or the Hα
line, with the difference that what is considered important is
learned in an unsupervised fashion.
We expected that significant spectral features have their own

attention channels. Identifying them is not trivial because there
is a multitude of aspects in any spectrum that are being
attended to in order to create a high-fidelity reconstruction. The
attention weights for a single example galaxy are shown in the
top left panel of Figure 4. We see a large number of activations,
with surprisingly many channels attending to features on the
red side of the spectrum, and very little attention focused on the
region around 5000Å. A possible interpretation for the
abundance of channels attending to the red side, which appears
to be very common for the galaxies we inspected, is that most
skylines are located there. As we do not remove them or
provide the weights and masks to the encoder, attention
channels attuned to them or their residuals may be helpful so
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that they are not mistaken for physically relevant features and
propagated to the latent space (see Laakom et al. 2021).

Even though this galaxy shows significant Hα emission, the
channel attending to Hα is not readily apparent. For broader
features, e.g., the 4000Å break, the activation pattern would be
even less obvious. To automate the identification of specific
attention channels responsible for any predicted SPENDER
quantity, we would need to know not just whether the attention
channel has been activated, but also whether it is important for
the relevant aspect of the model. To this end, we modify a
visualization technique for image classifications called Gradi-
ent-weighted Class Activation Mapping (Selvaraju et al. 2020).
In short, we run a forward pass through the autoencoder and
retain the attention weights a(y). Next, we define a scalar
function l( · ) of the model prediction, e.g., the restframe flux x¢
above continuum c of the spectral element nearest to the center
of the Hα line at 6565Å, x x clH 6565¢ = ¢ -a ( ) ( )∣ . We can then
compute the backward gradient xla ¢( ), i.e., the dependency of
l on any of the attention weights. Multiplying these gradients
with the attention weights computed in the forward pass,

ga x a yl , 4aº  ¢( ( )) ( ( )) ( )

identifies the activated channel and segment that is most
relevant for the value of l.

We show this method, which we dub Gradient-weighted
Feature Attention Mapping (Grad-FAM), applied to the same
galaxy in the top right panel Figure 4. We can see that channel
149 is most important for the predicted value of Hα emission,
and that its maximum wavelength segment is that in which the
Hα line falls. The bottom-left panel of Figure 4 shows the same
visualization for a higher-redshift galaxy with similarly strong
Hα emission. The maximum ga is still in channel 149, but it—
like the Hα line—has moved to a larger wavelength segment,
which demonstrates clearly the crucial capability of identifying
spectral features regardless of their location in the observed
spectrum, i.e., regardless redshift. Without this feature, finding
latent summaries of the restframe spectrum in a redshift-
invariant way would not be possible.

We can further exploit the association of Hα with attention
channel 149. The bottom-right panel of Figure 4 shows the
restframe models of a 6 randomly selected galaxies from the
same SDSS plate, ordered by ga149. We can clearly see that Hα
line strength monotonically increases from top to bottom.
Constructing and computing ga tells us where spectral features

are located that are important for a specific aspect of the
SPENDER prediction, and how strong they are.

4.4. Structure of the Latent Space

To further test our assertion that the SPENDER architecture
produces robust latent representation of an extended restframe
model from noisy and redshifted spectra, we embed the 10-
dimensional latent space into a two-dimensional UMAP
(McInnes et al. 2018). Figure 5 shows the resulting embedding
of 20,480 spectra. We can see a smooth, compact distribution
with two main lobes. Selecting 100 examples of galaxy types
with distinctive spectra—star-forming, starburst, and broadline
AGNs4—shows the expected clustering of similarly typed
galaxies. Within each group, there is no apparent dependence
on redshift or signal-to-noise ratio (S/N), indicating a robust
encoding.
The grouping of strong line emitters toward to upper edge

suggests that the vertical ordering is related to star formation.
Color coding each galaxy with the excess over continuum of
the Hα line lHα (see Section 4.3) in the top-right panel of
Figure 5 clearly shows the suspected dependence. A visual
inspection further confirms that the lower lobe is entirely
composed of quiescent galaxies. The SPENDER latents capture
the continuum in star-formation rates as one main degrees of
freedom in galaxy spectra. This finding is fully consistent with
numerous theoretical and empirical studies, including Portillo
et al. (2020) and Teimoorinia et al. (2022) who employed
different AE architectures.
This leaves at least one additional degree of freedom. Color

coding by S/N or reconstruction loss does not show any
noticeable dependence of the latents. However, as the bottom-
left panel of Figure 5 reveals, the horizontal position in the
UMAP is clearly correlated with redshift. While the center of
the UMAP is mostly composed of the galaxies from the most
common redshift range for the MGS, 0.05 z 0.25, and
shows no apparent redshift dependence, the left and right edges
are populated by the highest and lowest redshift galaxies. This

Figure 3. Left: 5 pixel wide SDSS-II LSF kernel learned from the data. Right: SDSS spectrum in the regions of the [O II]λλ3726,3729 and [S II]λλ6716,6731
doublets. The SPENDER SR model resolves the [O II] doublet that is heavily blended in the observation by increasing the restframe resolution by a factor of 2 and
deconvolving from the LSF model.

4 We follow the definition of SUBCLASS in the SDSS DR16 database, which
classified a galaxy as as star-forming if its spectrum has detectable emission
lines with log O H 0.7 1.2 log N H 0.4III IIa a< - +( ) ( ( ) . Star-forming
galaxies with Hα equivalent widths greater than 50 Å are classified as
starbursts. A galaxy is classified as an AGN if it has detectable emission lines
with log O H 0.7 1.2 log N H 0.4III IIa a> - +( ) ( ( ) ). Broadened line emis-
sion requires velocity dispersion of σ > 200 km s−1.
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is an unexpected finding because our architecture was designed
to establish a redshift-independent restframe encoding.

We suspect that the data themselves could induce a redshift
dependence, but we expect only little actual evolution in the
galaxy population over this redshift range. Selection effects
would change the relative abundance of samples in latent
space, presumably as a function of redshift, but not their
position. However, in a magnitude-limited sample any
dependence on stellar mass Må could mimic a redshift
dependence because at high redshifts only massive galaxies
get targeted, and low-mass galaxies are only targeted at low
redshifts. An increase in halo mass, as traced by stellar mass,
leads to a broadening of emission or absorption lines, which the
encoder can recognize. Color coding the latents by the median
of the stellar mass probability distributions for each galaxy

from the SDSS MPA-JHU catalog (Kauffmann et al. 2003)
indeed shows that the horizontal direction of the UMAP is
correlated with stellar mass (lower-right panel of Figure 5).
This finding can explain the redshift dependence and determine
stellar mass as the second major degree of freedom in SDSS-II
spectra. At this point, we cannot rule out a residual redshift
dependence, and will investigate this concern in a companion
paper (Liang et al. 2023).

5. Conclusion and Outlook

We have introduced the novel neural network architecture
SPENDER as a core building block to represent galaxy spectra
with a differentiable, data-driven approach. Its main novelty is
not the use of an autoencoder for this purpose—although the
very capable encoding architecture from Serràet al. (2018) has

Figure 4. Top left: direct attention weights a of the SPENDER LR-10 model for the spectrum shown in the lower subpanel. Marker sizes are proportional to weight
activations. Top right: Grad-FAM attention weights ga responsible for the peak height of the Hα line (see Equation (4)). Colors indicate gradient amplitudes, marker
sizes increased for clarity. Attention channel 149 is most highly activated, especially in the wavelength segment that contains the Hα line. Bottom left: same as top
right, but for a higher-redshift galaxy. Channel 149 remains most highly activated, finding Hα in a larger wavelength segment. Bottom right: six galaxies from the
same SDSS plate, ordered by Grad-FAM activation of channel 149, which serves as a proxy for Hα line strength.
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not been used in astronomy before. The main novelty lies in the
separation of the neural restframe representation from the
mapping to observational data. With this architecture, we
combine an unsupervised model of the relevant features in
galaxy spectra, for which our theoretical modeling abilities are
insufficient, with an explicit analytic treatment of the
transformations due to varying redshift and instrumental
capabilities. We can directly ingest large quantities of spectro-
scopic data without the need to de-redshift them or mask
artifacts, as the architecture learns to recognize these perturba-
tions during training.

SPENDER produces highly realistic galaxy spectra over the
full range of observed redshifts and noise levels in the SDSS
MGS. The restframe model exceeds the wavelength range and
spectral resolution of the original data, and can even be made to
deconvolve from the LSF to achieve effective superresolution.

With a latent space of 6–10 dimensions, it successfully
recovers complicated behavior, e.g., of the Hα-[N II] complex,
for virtually all spectra, even those with substantial line
broadening.
The encoder produces an interpretable latent space, whose

main ordering is directly related to stellar mass and the amount
of line emission in the spectra. Distinct galaxy types occupy
distinct regions in latent space. The redshift invariance of the
SPENDER latents, which is explicitly encouraged by the
architecture, is studied in Liang et al. (2023).
With such an interpretable low-dimensional latent space,

realistic mock spectra can be generated by sampling from or
interpolating between the full distribution or regions associated
with specific galaxy subtypes. Transforming the pretrained
latent space into a simpler distribution through a normalizing
flow model (Papamakarios et al. 2021), which could be

Figure 5. UMAP embedding of the SPENDER LR-10 latent variables for 20,480 spectra. Galaxy subpopulations (starburst, star-forming, and broadline AGN) form
clusters in latent space (top left, bolder colors indicate higher redshifts). Color coding by Hα line strength (top right) and stellar mass (bottom right) reveals the two
main dependencies of the spectrum embeddings, with the redshift dependence (emphbottom left) being a result of the magnitude cut of the survey.
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conditioned on redshift and other relevant parameters, provides
a more principled and computationally efficient approach for
generating such mock spectra. Doing so establishes a fully
probabilistic treatment of galaxy spectra, allowing not only
sampling but also evaluating the likelihood of given observa-
tions. We exploit the learned distribution of observable spectra
to detect outliers in Liang et al. (2023) and intend to stabilize
under-constrained inverse problems arising in future super-
resolution and data fusion applications.

One main assumption we have made so far is that an
accurate redshift estimate is available for every galaxy. It is
evidently possible to estimate the redshift directly from the
spectrum, but our encoding architecture is almost uniquely
unsuitable for this tasks: the attention module is meant to create
representations invariant under translation, which removes the
most obvious signature of redshift. However, SPENDER
implements a differentiable path for the redshift dependence
of the loss. Coupling it with another neural network that
performs the redshift estimation is thus a promising avenue for
a fully data-driven spectrum analysis pipeline.

To enable reproduction of our findings and aid further
development, we make our code and the best-fitting models for
SDSS spectra in both low and high-resolution settings publicly
available at https://github.com/pmelchior/spender.
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